Zoom Image

In focus

Prof. Dr. Xinliang Feng Zoom Image
Prof. Dr. Xinliang Feng

MPIP Press Release

On the right track to super batteries

Xinliang Feng receives ERC Grant

September 28, 2012

Mainz. The European Research Council awards the ERC Starting Grant for top-level early-career scientists to Xinliang Feng, who is employed at the Max Planck Institute for Polymer Research (MPI-P). With that the chemist receives development funds amounting to 1.5 million euros for the next five years in order to set up a research group. These funds allow Feng to continue and intensify research on two-dimensional materials. These two-dimensional nanosheets which consist of one layer of atoms, have unique characteristics and can be considered for a wide range of applications. "Our research will concentrate on materials for energy storage and conversion but will not be limited to that. It is clear that possible areas of application may reach much further," Feng is expecting.

Material synthesis on order

Since 2004, when Feng started his doctorate at the MPI-P, he has been working on synthesizing and studying these ultra-thin nanomaterials – especially graphene. This material, which is a layer of carbon atoms arranged in honey combs, is regarded as being promising in the future. Graphene excellently conducts electricity and heat, it is very light and elastic, however, as hard as diamond and hundred times more tearproof than steel. Its properties vary dependent on configuration and structure of the layer. Feng aims to produce these graphene materials by chemical synthesis as well as by mechanical exfoliation in order to adjust the properties to the functions and thus to the future applications. The chemist also aims to develop the synthesis of other nanosheets with tailored functions from metal oxides, polymers and organic compounds.
In this regard, not only single layers are interesting for Feng: He will develop strategies to combine several two-dimensional layers to compound materials, so-called composites. Again, this is how their properties can be specifically combined. Theoretically! This task that seems to be so easy requires comprehensive scientific know-how and experience in practice. Promising results have already been achieved at the MPI-P: The research group centered around director Klaus Müllen, where Feng belongs to as well, succeeded in developing a material composition for much more efficient lithium ions batteries amongst others. Instead of the storage material graphite, the scientists used metal oxides with significantly higher charge capacity. Due to the fact that these are not suitable for long term use, they were coated with graphene layers. The proceeding included some chemical tricks, but the prolonged battery life achieved indicates a great potential for countless users of mobile devices.

Practically based fundamental research

This was just the beginning for Xinliang Feng. The projects are still in their infancy; they must be optimized and standardized in order to allow the two-dimensional nanomaterials to develop from being hope to achieve performance in innovative applications. The European Research Council (ERC) honoured his results achieved so far, but also expresses high expectations for future developments.
ERC Starting Grants are among the most prestigious grants awarded by the European Research Council for world-class researchers. They give the opportunity for top-level early-career scientists to conduct fundamental research and establish or consolidate their own research team. According to ERC, the ERC 2012 promotes more than 500 research scientists and their projects with a total of about 800 million euros. All in all, more than 4,100 scientists applied for this grant.

Max Planck Institute for Polymer Research
Press and Public Relations
Stephan Imhof
Phone: +49 6131 379-132

loading content
Go to Editor View