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Abstract: Coarse-graining is a systematic way of reducing the number of degrees of freedom
representing a system of interest. Several coarse-graining techniques have so far been
developed, such as iterative Boltzmann inversion, force-matching, and inverse Monte Carlo.
However, there is no unified framework that implements these methods and that allows their
direct comparison. We present a versatile object-oriented toolkit for coarse-graining applications
(VOTCA) that implements these techniques and that provides a flexible modular platform for
the further development of coarse-graining techniques. All methods are illustrated and compared
by coarse-graining the SPC/E water model, liquid methanol, liquid propane, and a single molecule

of hexane.

1. Introduction

Computational materials science deals with phenomena
covering a wide range of length- and time-scales from
Angstrgms (typical bond lengths) and femtoseconds (bond
vibrations) to micrometers (crack propagation) and mil-
liseconds (a single polymer chain relaxation). Depending on
the characteristic time- and length-scales involved, the system
description can vary from first principles and atomistic force
fields to coarse-grained models and continuum mechanics.
The role of bottom-up coarse-graining, in a broad sense, is
to provide a systematic link between these levels of
description.

Here we focus on coarse-graining techniques that link two
particle-based descriptions with a different number of degrees
of freedom. The system with the larger number of degrees
of freedom we denote as the reference system. The system
with the reduced number of the degrees of freedom is referred
to as the coarse-grained system. An example is an all-atom
(reference) and a united-atom (coarse-grained) molecular
representation, where the number of the degrees of freedom
is reduced by embedding hydrogens into heavier atoms.>
Another example, which is treated in detail here, is an all-
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atom (three sites) and a single site model of water. Other
examples can be readily found in the literature.' ™2

We also assume that the following prerequisites are
satisfied:

(i) Both the reference and the coarse-grained descriptions
are represented by a set of point sites, r ={r;}, i =1, 2, ...,
n, in case of the reference system, and R ={R;}, j = 1, 2,
..., N, in case of the coarse-grained system.56

(i1) A mapping scheme, i.e., a relation between r and R,
can be expressed as R = 1\7Ir, where M is a n x N matrix.”’

(iii) For the reference system, we have the coordinates
and the forces of a trajectory that samples a canonical
ensemble (or that part of it we are interested in reproducing
on a coarse-grained level).

Then the prime task of systematic coarse-graining is to
devise a potential energy function of the coarse-grained
system, U(R).

To do this, one can use several coarse-graining approaches.
From the point of view of implementation, these approaches
can be divided into iterative and noniterative methods.
Boltzmann inversion is a typical example of a noniterative
method.! In this method, which is exact for independent
degrees of freedom, coarse-grained interaction potentials are
calculated by inverting the distribution functions of the
coarse-grained system. Another example of a noniterative
method is force matching, where the coarse-grained potential
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is chosen in such a way that it reproduces the forces on the
coarse-grained beads.>'* Configurational sampling,'* which
matches the potential of mean force, also belongs to this
category. Boltzmann inversion and force matching only
require a trajectory for a reference system.>® Once that is
known, coarse-grained potentials can be calculated for any
mapping matrix M.

Iterative methods refine the coarse-grained potential U(R) by
reiterating coarse-grained simulations and by calculating cor-
rections to the potential on the basis of the reference and the
coarse-grained observables (e.g., radial distribution function or
pressure). The simplest example is the iterative Boltzmann
inversion method,'> which is an iterative analogue of the
Boltzmann inversion method. More sophisticated (in terms of
the update function) is the inverse Monte Carlo approach.'®

One can also classify systematic coarse-graining ap-
proaches by the micro- and macroscopic observables they
use toderive the coarse-grained potential, such as structure-, 116,17
force-,>'*'® and potential-based approaches,'® where the
name identifies the observable used for coarse-graining. Note
that hybrids of these methods are also possible.™'?

With a rich zoo of methods plus their combinations
available at hand, it is natural to ask about an optimal method
for a specific class of systems. On a more fundamental level,
one might question whether the different methods provide
the same coarse-grained potential and whether it is possible
to formulate a set of (even empirical) rules favoring one
method with respect to another. It is obvious this is a difficult
task to be treated analytically, especially for realistic systems.
To assess the quality of a particular coarse-graining tech-
nique, one needs to apply all available methods to a certain
number of systems and to compare and quantify the degree
of discrepancy between the coarse-grained and the reference
descriptions. This is, however, cumbersome due to the
absence of a single package where all these methods
are implemented with the same accuracy and same level of
technical detail.

The main aim of this work is to introduce such a coarse-
graining package. The paper is organized as follows: We
first describe the basic ideas behind each method, paying
special attention to the technical issues one has to overcome
when implementing them. We then illustrate these methods
by coarse-graining systems of different complexities: a three-
site SPC/E water, methanol, propane, and hexane.

2. Methods

Before starting with brief recapitulations of the coarse-
graining methods, we refer the reader to a (far from complete)
list of reviews which cover various aspects of generating
coarse-grained potentials.?®”2°

2.1. Boltzmann Inversion. Boltzmann inversion is the
simplest method one can use to obtain coarse-grained
potentials.' It is mostly used for bonded potentials, such as
bonds, angles, and torsions. Boltzmann inversion is structure-
based and only requires positions of atoms.

The idea of Boltzmann inversion stems from the fact that
in a canonical ensemble independent degrees of freedom ¢
obey the Boltzmann distribution, i. e.:
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P(q) = Z 'exp[—BU(q)] (1)

where Z = [ exp[—fU(q)] dq is a partition function, § =
1/kgT. Once P(q) is known, one can invert eq 1 and obtain
the coarse-grained potential, which, in this case, is a potential
of mean force:

U(q) = —kgT'In P(q) @)

Note that the normalization factor Z is not important since
it would only enter the coarse-grained potential U(g) as an
irrelevant additive constant.

In practice, P(q) is computed from the trajectory of the
reference system, which is sampled either by Monte Carlo,
molecular dynamics, stochastic dynamics, or any other
integrator that ensures a canonical distribution of states.

Boltzmann inversion is simple to implement, however, one
has to be careful with the rescaling of the probability P due
to orientational entropy as well as computational issues.
The probability rescaling can be explained on a particular
example of coarse-graining of a single polymer chain by
beads with bond, angle and torsion potentials. In this case
the coarse-grained potential U depends on three variables,
bond length r, angle 6, and torsion angle .

Assuming, as before, a canonical distribution and inde-
pendence of the coarse-grained degrees of freedom, we can
write:

P(r, 0, @) = exp[—pU(r, 0, )] 3
P(r,0, ) = P(NPO)P(¢) “)

If we now compute the histograms for the bonds H.(r),
angle Hy(0), and torsion angle H,(¢), then we must rescale
them in order to obtain the volume normalized distribution
functions.>’

_H®  H(0)
PO= 5 PO = G

P (@) = H,(¢)
®)

The coarse-grained potential can then be calculated by
Boltzmann inversion of the distribution functions:

U(r.0.0) = U0 + Uy(®) + U, (@)

U(q) = —ksTIn P,(q), g=r6,¢p ©

On the technical side, the implementation of the Boltzmann
inversion method requires smoothing of U(g) to provide a
continuous force. Splines can be used for this purpose. Poorly
and unsampled regions, that is regions with high U(g), shall
be extrapolated. Since the contribution of these regions to
the canonical density of states is small, the exact shape of
the extrapolation is less important.

Another crucial issue is the cross-correlation of the coarse-
grained degrees of freedom. Independence of the coarse-
grained degrees of freedom is the main assumption that
allows factorization of the probability distribution, eq 4, and
the potential, eq 6, hence, one has to carefully check whether
this assumption holds in practice. This can be done by
performing coarse-grained simulations and by comparing
cross-correlations for all pairs of degrees of freedom in
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atomistic and coarse-grained resolution, e.g., using a two-
dimensional histogram, analogous to a Ramachandran plot.®°

2.2. Iterative Boltzmann Inversion. Iterative Boltzmann
inversion (IBI) is a natural extension of the Boltzmann
inversion method. Since the goal of the coarse-grained model
is to reproduce the distribution functions of the reference
system as accurately as possible, one can also iteratively
refine the coarse-grained potentials using some numerical
scheme. Depending on the update function, this can be done
by using either the iterative Boltzmann inversion'® or the
inverse Monte Carlo'®'” method. We will first discuss the
iterative Boltzmann inversion method.

In the iterative Boltzmann inversion, the coarse-grained
potential is refined according to the following scheme:®'

lj(thl) — l](n) + AU(n)
P(n) ref U(n) (7)

AU = kBTlnP—f = Upmr PME
Ie]

One can easily see that convergence is reached as soon as
the distribution function P™ matches the reference distribution
function Py, or, in other words, the potential of mean force,
Utir converges to the reference potential of mean force.

IBI can be used to refine both bonded and nonbonded
potentials. It is primarily used for simple fluids with the aim
of reproducing the radial distribution function of the reference
system in order to obtain nonbonded interactions.'® It can
have convergence problems for multicomponent systems,
since it does not account for cross-correlation correction
terms, that is the updates for Paa, Pap, and Pgg are not
coupled (the subscript enumerates a single component in a
multicomponent system). For such systems, the inverse
Monte Carlo method works better. The scheme can be
stabilized by multiplying the update function, AU™, by a
factor € [0..1].

On the implementation side, IBI has the same issues as
the inverse Boltzmann method, i.e., smoothing and extrapo-
lation of the potential must be implemented.

We shall also mention that, according to the Henderson
theorem,?” which is a classical analogue of the Hohenberg—
Kohn theorem, the pairwise coarse-grained potential U(r) is
unique up to an additive constant and exists,”®*° which, in
principle, states that all structure-based iterative methods
must converge to the same coarse-grained potential, provided
that their aim is to exactly reproduce pair correlation
functions of the reference system. As we will see later, this
is often not the case in practice, since small changes in the
radial distribution function often lead to big changes in the
pair potential, i.e., it is difficult to control systematic errors
during the calculation of the potential update.

Another issue of coarse-graining is that coarse-grained
models cannot reproduce all the statistical or thermodynamic
properties of the reference system. Pressure, compressibility,
or viscosity®® are often very different from those of the
reference system. In some cases, however, one can correct
for some of these. For example, the viscosity can be adjusted
by tuning the parameters of the thermostat," and the pressure
can be corrected iteratively by adding a linear term to the
nonbonded potential:
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A[PTEssure :A(l _ rL) )
cut

where A is either a constant, e.g., —0.1kgT,"> or can be

estimated from the virial expansion.*> Compressibility and
pressure, however, cannot be corrected simultaneously.

2.3. Inverse Monte Carlo. Inverse Monte Carlo (IMC)
is another iterative procedure that refines the coarse-grained
potentials until the coarse-grained model reproduces a set
of reference distribution functions. It is very similar to IBI
except that the update of the potential, AU, is calculated using
rigorous thermodynamic arguments.

The name “inverse Monte Carlo” is somehow confusing
and is due to the fact that the original algorithm was
combined with Monte Carlo sampling of the phase space.'®
However, practically any sampling method can be used (e.g.,
molecular or stochastic dynamics) as long as it provides a
canonical sampling of the phase space.

A detailed derivation of the IMC method can be found in
ref 16. Here we briefly recapitulate the more compact version
for nonbonded interactions, which is outlined in ref 25
emphasizing technical problems encountered during imple-
mentation and application of the method.

The idea of IMC is to express the potential update AU in
a thermodynamically consistent way in terms of measurable
statistical properties, e.g., radial distribution function g(r).
Considering a single-component system as an example, we
can write the Hamiltonian of the system as

H= Y Uy )
ij

where U(r;) is the pair potential, and we assume that all
interactions depend only on the distance, r;;, between particles
i and j. We further assume that this potential is short-ranged,
ie, Ulry) = 0,if ryj = reye

The next step is to tabulate the potential U(r) on a grid of
M points, ry = aAr, where . =0, 1, ..., M, and Ar = r M
is the grid spacing. Then the Hamiltonian, eq 9, can be
rewritten as

H= Y,US, (10)

where S, is the number of particle pairs with interparticle
distances r;; = r,, which correspond to the tabulated value
of the potential U,,.

On one hand, the average value of S, is related to the
radial distribution function g(r):

2
NN — 1)4m"aAr
(S = Ty gy an

where N is the number of atoms in the system, ((1/2)N(N —
1) is then the number of all pairs), Ar is the grid spacing,
re/M, and V is the total volume of the system.

On the other hand, {S,) is a function of the potential U,
and, hence, can be expanded in a Taylor series with respect
to small perturbations of Uy, AU,
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S
ASH =D, 8<U(:,> AU, + OAD (12)

Y

The derivatives &(S,)/dU, can be obtained by using the
chain rule:

Sy

* av,

) [ daS(q) expl—B Y, U;Sy(@)]
A

U, [ dgexpl—B Y, USy(@)]
A
BUSXS,) = (5,5,

(13)

Equations 11—13 allow us to calculate the correction for
the potential by solving a set of linear equations:

(S — S&' = Ay, AU, (14)

where S is given by the target radial distribution function.
The procedure is then repeated until convergence is reached.
A clear advantage of the IMC compared to the IBI method
is that the update of the potential is rigorously derived using
statistical mechanics, and hence, the iterative procedure shall
converge faster with the IMC update than with the empirical
IBI update. Another advantage is that, in the case of
multicomponent mixtures, IMC takes into account correla-
tions of observables, that is updates for Uaa, Uap, and Ugg
are interdependent (A and B denote different particle types).
In the IBI method, these updates are independent which often
leads to convergence problems for multicomponent systems.
The advantages come, of course, at a computational cost.
As it is clear from eq 13, one has to calculate cross-
correlations of S,. This requires much longer runs to get
statistics that are good enough to calculate the potential
update to a similar accuracy as IBI. The accuracies of the
update functions of IMC and IBI methods are compared in
Section 4.1 for the case of a coarse-grained model of water.
Another issue of the IMC method is the stability of the
scheme. Several factors can influence it: the first, and rather
technical, point is that g™/(r,) has to be calculated using
exactly the same convention for the grid as S, (e.g., the
function value should be assigned to the middle of the
interval), otherwise the scheme becomes unstable. Second,
inversion of A, requires that it shall be well-defined. This
means that one has to remove the regions which are not
sampled, such as those at the beginning of the radial
distribution function. The convergence can be significantly
improved if a smoothing of the potential update AU is used.
Note that it is better to do smoothing of the update function,
not the potential itself, since the latter has more features
which can be lost due to too aggressive smoothing. The
convergence can also be improved by introducing a multi-
plicative prefactor for the update function or by using a
regularization procedure by adding thermodynamic con-
straints.™?
Finally, we have also noticed that the systematic error in
(SaS,) is always higher in the vicinity of the cutoff, which
leads to a shift in the tail of the interaction potential and, as
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a result, to a large offset of pressure. The cross-correlation
term (S.S,) is also very sensitive to the box size, and special
care must be taken in order to converge the results with
respect to system size. Finite size effects are discussed in
detail in Section 4.2, where we coarse-grain liquid methanol.

2.4. Force Matching. Force matching (FM) is another
approach to evaluate corse-grained potentials.>'*** In con-
trast to the structure-based approaches, its aim is not to
reproduce various distribution functions, but instead try to
match forces on coarse-grained beads as closely as possible.®?
FM is a noniterative method and, hence, is less computa-
tionally demanding.

The method works as follows: we first assume that the
coarse-grained force field (and hence the forces) depends
on M parameters g, ..., gy. These parameters can be pref-
actors of analytical functions, tabulated values of the
interaction potentials, or coefficients of splines used to
describe these potentials.

In order to determine these parameters, the reference forces
on coarse-grained beads are calculated by properly reweight-
ing the forces on the atoms:

Wofo

g

=M (15)

where M; = (X owo2/my)~ ! is the mass of the bead i, index a
numbers all atoms belonging to this bead, f, is the force on
the atom @, m,, is its mass, w, are mapping coefficients used
to obtain the position of the coarse-grained bead, R; =
YaWal'e. If the center of mass is used in the mapping, then
eq 15 simplifies to the sum of the forces.

By calculating the reference forces for L snapshots, we
can write down N x L equations:

fEg, gy =f5, i=1,.,N, I=1,..L
(16)

Here f%" is the force on the bead i, f$ is the coarse-grained
representation of this force. Index / enumerates snapshots
picked for coarse-graining. By running the simulations long
enough one can always ensure that M < N x L. In this case,
the set of eqs 16 is overdetermined and can be solved in a
least-squares sense.

Though the underlying idea of FM is very simple,
implementation-wise it is the most complicated method. Here
we briefly outline the problems, which are then discussed in
more detail in Appendix A.

Going back to the set of eqs 16, one can see that f# is, in
principle, a nonlinear function of its parameters {g;}. It is,
therefore, useful to represent the coarse-grained force field
in such a way that eqs 16 become linear functions of {g;}.
This can be done using splines to describe the functional
form of the forces.’

An adequate sampling of the system requires a large
number of snapshots L. Hence, the applicability of the
method is often constrained by the amount of available
memory. To remedy the situation, one can split the trajectory
into blocks, find the coarse-grained potential for each block
and then perform averaging over the blocks. More details
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on the technical implementation of force matching using
cubic splines is given in Appendix A.

3. Implementation

3.1. Coarse-Graining Engine. In a nutshell, coarse-
graining is nothing more than an analysis of the canonical
ensemble of a reference (high resolution) system. In addition
to this analysis, iterative methods require canonical sampling
of the coarse-grained system, which can be done using either
molecular dynamics (MD), stochastic dynamics (SD), or
Monte Carlo (MC) techniques. The latter are implemented
in many standard simulation packages. Rather than imple-
menting its own MD/SD/MC modules, the toolkit allows
swift and flexible integration of existing programs in such a
way that sampling is performed in the program of choice.
Only the analysis needed for systematic coarse-graining is
done using the package tools.

The tools include calculations of probability distributions
of bonded and nonbonded interactions, correlation and
autocorrelation functions, and updates for the coarse-grained
pair potential. Analysis tools of the MD package can also
be integrated into the coarse-graining workflow, if needed.

The package offers a flexible framework for reading,
manipulating, and analyzing of MD/SD/MC topologies and
trajectories. Its core is modular, and new file formats can be
integrated without changing the existing code. At the
moment, an interface for GROMACS? topologies and
trajectories is provided. An interface to ESPResSo++ is
planned.

The coarse-graining procedure itself is controlled by several
extensible markup language (XML) input files, which contain
mapping and other options required for the workflow control.
In the mapping, it is possible to select groups of interactions
which will be used for coarse-graining or analysis.

3.2. Iterative Workflow Control. The workflowchart is
shown in Figure 1. The workflow is implemented as a shell
script which can, in principle, be run on all available operating
systems and provides the flexibility needed to call external (or
overload existing) scripts and programs written in other
programming languages. An interface to read values from the
steering XML files in C++, Perl, and shell is also provided.

During the global initialization, the initial guess for the coarse-
grained potential is calculated from the reference radial distribu-
tion function or converted from a given potential guess to the
internal format. The actual iterative step starts with an iteration
initialization. It searches for possible checkpoints and copies
and converts files from the previous step and the base directory.
Then the simulation run is prepared by converting potentials
to the format required by the external sampling program, and
actual sampling is performed. Currently, an interface with
GROMACS™ is implemented, and an extension to other
packages is straightforward. After sampling the phase space,
potential update AU is calculated. Often the update requires
postprocessing, such as smoothing, interpolation, extrapolation,
or fitting to an analytical form. A simple pressure correction'”
can also be seen as a postprocessing of AU due to the fact that
it only adds a linear interparticle separation function. Finally,
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Y ) Initialize global variables (paths to
Global initialization scripts, executables and user-defined
l ) ) scripts)
Convert target distribution functions
Iteration initialization ]into internal format, prepare input
l ) | files, copy data of the previous step
P . ) Prepare input files for the external
repare sampling ’
sampling program
( Y| Canonical ensemble sampling with
Sampling )molecular dynamics, stochastic dy-
l namics or Monte Carlo techniques
N ] Analysis of the run. Evaluation of dis-
Calculate updates tribution functions, potential updates
L l AU®)
Postprocessing ) Smoothing, extrapolation of potential
of updates updates. Ad-hoc pressure correction.
Update potentials Untl) = g 4 AU™
Postprocessing | Smoothing, extrapolation of potentials
of potentials U(nt+1)
Evaluation of the convergence crite-
rion either for AU(™ or distribution
yes functions. Check the number of itera-

tions.

)

Figure 1. Block-scheme of the workflow control for the
iterative methods. The most time-consuming parts are marked
in red.

the new potential is determined and postprocessed. If the
iterative process continues, then the next iterative step starts to
initialize.

4. Examples

We illustrate the package functionality using four systems:
SPC/E water, liquid methanol, liquid propane, and a single
chain of hexane. The systems are chosen in such a way that
the corresponding coarse-grained potentials have already
been obtained using one or more techniques, providing a
good reference point for comparison.

4.1. Coarse-Graining of Water. Water is one of the most
studied liquids from the point of view of both all-atom
representations and coarse-grained models.*®*” Here we
coarse-grain one of the all-atom models of water, the
SPC/E**-*° water model. The corresponding parameters of
this three-site model are given in the caption to Figure 2.
Note that this is a rigid model, i.e., the distances between
two hydrogens as well as oxygen and hydrogens are
constrained during the molecular dynamics runs. For the
coarse-grained representation, we use a one-site representa-
tion with a pair potential U(R;;), where R;; connects the centers
of mass of water molecules i and ;.

The all-atom system consisting of 2180 water molecules
was first equilibrated in the NPT ensemble at 300K and 1
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Figure 2. Water: (a) Coarse-grained potentials for SPC/E water obtained using different coarse-graining techniques. (b)
Corresponding radial distribution functions. (c) Average error of the potential update function versus number of snapshots used
for calculating the update function. (d) Root-mean-square deviation of reference and current radial distribution function versus
iteration step. One can see that IMC converges faster than that of IBI. Inset of (a) shows van der Waals excluded volume and
coarse-grained representations of a single water molecule as well as parameters used: o = 3.166 A, ¢ = 0.650 kJ mol™", oy =

1.0000 A, g = +0.4238e, go = —0.84766, Oy = 109.47°.

bar for 100 ns using the Berendsen thermostat and barostat.*’
The last 80 ns were used to determine the equilibrium box
size of 4.031 nm, which was then fixed during the 45 ns
production run in the NVT ensemble using a stochastic
dynamics algorithm.*' For all further analysis, only the last
40 ns were used. The radial distribution function was
calculated using a 0.01 nm grid spacing. The snapshots were
output every 0.4 ps.

Force matching potentials were calculated using blocks
of six snapshots each. Spline grid spacing of 0.02 nm was
used in the interval from 0.24 to 1 nm. For the iterative
procedures, the potential of mean force was taken as an initial
guess for the interaction potential. The coarse-grained box
had the same system size as in the atomistic simulations.
Simulations of the coarse-grained liquid were done using a
stochastic dynamics algorithm.*' When using IBI, 300
iterations of 100 ps each were performed. For IMC, we used
10 iterations of 500 ps each. Additionally, two iterations of
triangular smoothing were applied to the IMC potential
update, AU. The cutoff was chosen at 0.9 nm with a grid
spacing of 0.01 nm.

The reference radial distribution function, g™(r), coarse-
grained potentials, and corresponding radial distribution func-
tions are shown in Figure 2a,b. IBI and IMC give practically
the same interaction potential. Although the force-matched
potential has a very similar structure with two minima, the
corresponding radial distribution function is very different from
the target one. Possible reasons for these discrepancies are
discussed in refs 23, 25, and 34, and stem from the fact that
FM aims to reproduce the many-body potential of mean force,
which does not necessarily guarantee perfect pairwise distribu-
tion functions, considering the fact that the basis sets in the
coarse-grained force field may be limited.

Note that all three methods lead to a different pressure of
the coarse-grained system: 8000 bar (IBI), 9300 bar (IMC),
and 6500 bar (FM). Different pressures for the iterative
methods are due to a different accuracy of the potential
update. Indeed, small changes of pressure can significantly
affect the potential, especially its long tail.'>** However,
they hardly change the radial distribution function due to
the small compressibility of water. One can improve the
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Figure 3. Methanol: (a) Coarse-grained potentials. (b) Corresponding radial distribution functions. (c) coarse-grained potentials
using 10 IMC iterations for simulation boxes with 1000, 2000, and 8000 methanol molecules (box size 4.09, 5.15308, and 8.18
nm) equilibrated at the same density. (d) Root-mean-square deviation of reference and the current radial distribution function
versus number of iterations. Similar to liquid water, IMC converges faster than IBI. The convergence saturates and the saturation
error strongly depends on the system size. The inset of (a) shows the van der Waals excluded volume and coarse-grained

representations of a methanol molecule.

agreement between the iterative methods by using pressure
correction terms for the update.

The performance of the iterative methods depends on two
factors: (i) the average (over all bins) error of the potential
update eap; and (ii) the number of iterations required for
convergence. We define the average error as

N
Ery = ]%]2 e(AU(r,)) (17)
i=0

where N is the number of bins and e(AU(r;)) is the error of
the update function at a separation r;. &(AU(r;)) was
calculated using a Jackknife analysis.*?

The average error of the potential update is shown in
Figure 2c as a function of the run length. One can see that,
for both methods, the error decreases as 17/ L, where L is
the number of snapshots used for averaging. However, the
prefactor for the IBI update error, which is based on the radial
distribution function, is at least 10 times smaller than of the
IMC update error, which makes use of cross-correlations of

S« This observation implies that, in order to have the same
accuracy of the update function, IMC needs significantly
longer sampling.

This disadvantage is, of course, compensated by the
efficiency of the update function, which is assessed by
computing the root-mean-square deviation, Ag,, of the
current and target radial distribution functions:

Agr= [ — g" () dr (18)

Ag, is plotted as a function of the number of iterations, n,
in Figure 2d. It is clear that IMC converges much faster than
IBI, though the root-mean-square deviation saturates after
some number of iterations.

4.2. Coarse-Graining of Methanol. Liquid methanol (see
the inset in Figure 3) is the second example of coarse-
graining of nonbonded interactions that we present here. In
fact, FM has already been used to coarse-grain this system,*?
and contrary to water, the liquid structure (radial distribution
function) is well reproduced by the FM coarse-grained
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potential. In addition, the excluded volume of methanol is
larger than that of water, and the undulations of the radial
distribution function extend up to 1.5 nm. As we will see,
this leads to pronounced finite size effects for IMC, since it
has a nonlocal potential update. FM and IBI do not have
this problem, since the IBI potential energy update is local,
and FM is based on pair forces. The range of the latter is
much shorter than the correlation length of structural
properties (such as undulations of the radial distribution
function), which may propagate over the boundaries for small
boxes.

Simulation parameters were taken from ref 42, and
OPLS** all-atom force field was used. Atomistic simula-
tions were performed with 1000 methanol molecules in a
cubic box (4.09 nm box size) at 300K using the Nosé —Hoover
thermostat.*>*’ The system was equilibrated for 2 ns
followed by a production run of 18 ns. The reference radial
distribution function was calculated using snapshots every
0.5 ps and is shown in Figure 3b.

The FM potential was calculated using blocks of six frames
each and using a spline grid of 0.02 nm. With this potential,
coarse-grained simulations were performed using a stochastic
dynamics integrator and using 1000 beads with the same box
size and the same temperature as in the atomistic simulations.
The system was equilibrated for 40 ps followed by a
production run of 160 ps. Snapshots were stored every 5 ps
and used to calculate the radial distribution function.

For the iterative procedures, the potential of mean force
was taken as an initial guess. The cutoff was chosen at 1.54
nm with a grid spacing of 0.01 nm. For IBI, 300 iterations
were performed using stochastic dynamics with the same
parameters used in the FM-based procedure. The IMC
iterations were performed with 8000 molecules and a box
size of 8.18 nm. The total length of the run was 1 ns, and
snapshots were stored every 0.2 ps. Two smoothing steps
were used at each iteration for the potential update, AU.

The coarse-grained potentials for all methods are shown
in Figure 3a. In spite of small differences between the coarse-
grained potentials, the agreement between the reference and
the coarse-grained radial distribution functions is excellent,
as can be seen from Figure 3b.

It is important to mention that the IMC method, which has
a nonlocal update, is prone to systematic errors due to finite
size effects and, hence, requires much larger simulation boxes
in order to calculate the potential update. This is due to artificial
cross-correlations of S, at large distances, which lead to a small
difference of tails between the coarse-grained and the reference
radial distribution functions, and, as a consequence, to a much
higher pressure of the coarse-grained system and a significantly
different coarse-grained potential. In contrast, IBI and FM work
well with system sizes of the order of two radial distribution
function cutoff lengths.

To illustrate this point, we prepared simulation boxes of three
different sizes, with 1000, 2000, and 8000 methanol molecules
(box size of 4.09, 5.15308, and 8.18 nm and simulation times
of 3, 2, and 1 ns, respectively). The IMC iterative procedure
was repeated until the potentials converged, and these are shown
in Figure 3c. One can see that the potentials significantly differ
from each other. These differences lead to small deviations in
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the tail of the radial distribution function, which, however,
vanish in a systematic way for bigger boxes, as illustrated in
Figure 3d where we plot the integral of the difference of the
reference and the current distribution functions.**

To summarize, IMC should be used with care for small
systems. The potential update (or the coarse-grained poten-
tial) must be converged with respect to the simulation box
size. In the case of methanol coarse-graining, a box of size
three times the radial distribution function cutoff was not
enough to achieve the converged potential for IMC, even
though this is sufficient for IBI and FM methods.

4.3. Liquid Propane: From an All- To an United-
Atom Description. So far we have illustrated coarse-graining
of nonbonded degrees of freedom using liquid water and
methanol as examples. Here we show how bonded interactions
can be coarse-grained by deriving a united-atom model (i.e.,
hydrogens embedded into heavier atoms) from an all-atom
model of liquid propane.®® The mapping scheme as well as the
bonded coarse-grained variables (two bonds, b, and one angle,
6) are shown in the inset of Figure 4. Note that this coarse-
graining scheme has two different bead types: an inner bead,
of type B, with two hydrogens, and two outer beads, of type
A, with three hydrogens. As a result, three types of nonbonded
interactions, Uaa, Ugp, and Uxg must be determined.

As before, atomistic simulations were performed using the
OPLS all-atom force field.***> A box of liquid propane was
first equilibrated at 200K and 1 bar in the NPT ensemble for
10 ns, using the Berendsen thermostat and barostat.*® The
equilibrated box of the size 4.96337 x 5.13917 x 4.52386 nm?
was then simulated for 10 ns in the NVT ensemble at 200K
using velocity rescaling.*® No bond constraints were used during
the simulations, and hence, the integration time step was 1 fs.
Snapshots were written every 1 ps.

In the case of iterative methods, the bonded potentials
(bond and angle) were calculated by Boltzmann-inverting
the corresponding distribution functions of a single molecule
in vacuum, according to eq 5. The propane molecule in
vacuum was simulated in an stochastic dynamics run*' for
100 ns with snapshots stored every 2 ps. Nonbonded
potentials were iteratively refined by using IBI with a grid
spacing of 0.01 nm and a cutoff of 1.36 nm (1.38 nm) for
A—A, A—B (B—B) interaction types, respectively. The run
length for each iteration was 50 ps with snapshots written
every 0.5 ps. At every iteration step, only one interaction
type was corrected. When using the FM method, both bonded
and nonbonded potentials were obtained at the same time,
since FM does not require the explicit separation of bonded
and nonbonded interactions.

The obtained potentials are shown in Figure 4a, c, and d.
FM and Boltzmann inversion-derived bond and angle
potentials (Figure 4c and d) perfectly agree with each other.
The nonbonded potentials, shown in Figure 4a, are not
completely identical but have similar shapes and barrier
heights. This, of course, results in a good reproducibility of
the propane liquid structure by the FM-based coarse-grained
potentials, as can bee seen from the radial distribution
functions shown in Figure 4b. Again, as expected, IBI
reproduces the reference radial distribution functions exactly.
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Figure 4. Propane: (a) Nonbonded interaction potentials Uaa, Uss, and Uag obtained with IBI and FM methods. For clarity, FM
potentials are offset along the y-axis. (b) Corresponding radial distribution functions plotted together with the atomistic radial
distribution function. (c) Bond potential obtained for a single molecule in vacuum by Boltzmann-inverting the corresponding
distribution function, using FM for a single propane molecule in vacuum and using force matching for liquid propane. (d) Angular
coarse-grained potentials. The inset of (c) shows the correlations of b and 6. The inset of (d) shows all-atom and coarse-grained
representations of a propane molecule, bead types, and coarse-grained bonded degrees of freedom (bond b and angle 6).

To summarize, the united-atom model of liquid propane
is an ideal example of coarse-graining where the structure-
and force-based methods result in similar bonded and
nonbonded interaction potentials. As we will see later, this
is due to: (i) the completeness of the basis set used to
construct the coarse-grained force field; and (ii) independence
of bond and angular degrees of freedom. The latter can be
understood with the help of a histogram showing the
correlation of b and 6, depicted in the inset of Figure 4c.

In the next section, we will look at coarse-graining of a
single molecule of hexane, for which this is not the case.

4.4. Angular Potential of a Hexane Molecule. The final
example we would like to discuss here is the angular potential
of a hexane coarse-grained into a three-bead chain, with two
carbon atoms per bead (see the inset in Figure 5a). Atomistic
simulations of a single hexane molecule in vacuum were
performed using an all-atom OPLS force field and a
stochastic dynamics integrator.*' The run length was 1000
ns, and the snapshots were stored every 2 ps.

The coarse-grained angular potential was again obtained
by Boltzmann-inverting the angular distribution function or
by using the FM method (we used blocks of 50000 frames
each, spline grid of 0.05 nm, and sampling in the 6 €
[1.6, 3.14] interval). Both coarse-grained potentials are shown
in Figure 5a. The corresponding distribution functions,
together with the reference function obtained from the
atomistic simulations, are shown in Figure 5b.

It is obvious that the distribution, which corresponds to
simple Boltzmann inversion, is practically identical to the
reference distribution, while the FM-based distribution
samples small angles much more often, which is a direct
consequence of a very deep local minimum in the angular
potential at these angles. It is easy to understand why FM
fails to predict the relative height of this minimum. On a
coarse-grained level, the change of the angle from large to
small values corresponds to the reorientation of the dihedral
angles at the atomistic level. This reorientation results in
instantaneous forces, fi, f>, and f3, on the beads which have



3220 J. Chem. Theory Comput., Vol. 5, No. 12, 2009

25.0 ¢
20.0 +
15.0 |

5.0 +

Boltzmann inversion
force matching -~

0.0

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0 (rad)

Riihle et al.

(b) atomistic
3.0 Boltzmann inversion -
o force matching - 1
2.0 b
1.0 f
0.0 L™

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0 (rad)

Figure 5. Hexane: (a) Coarse-grained angular potentials obtained using Boltzmann inversion (no iterations) and using FM for
a single hexane molecule in vacuum. The inset of (a) shows the hexane molecule and its coarse-grained representation. Arrows
indicate the directions of the forces on three beads for a specific snapshot. (b) Probability density (probability distribution normalized
by the interval) obtained from the atomistic run as well as from the runs using coarse-grained angular potentials. The inset of

(b) shows the correlation of b and 6.

an out of plane component, where the plane is defined by
the centers of the beads (see also the inset of Figure 5Sa).
The coarse-grained potential, however, has only an angular
term, Uy, and can only capture forces which lie in the plane
in which the angle 6 is defined. Hence, only the projections
of the forces on this plane are used in FM, and this clearly
leads to underestimation of the position of the second
minimum, since the work conducted by the out-of-plane
forces is completely ignored.®®

Additionally, this mapping scheme does not have inde-
pendent variables, e.g., bond and angle degrees of freedom
are coupled, as can be seen from the Ramachandran plot
shown in the inset of Figure 5b. This means that, even though
Boltzmann inversion reproduces correct distributions, sam-
pling of the configurational space is incorrect because of the
lack of cross-correlation terms in the coarse-grained potential.

This example clearly shows that coarse-graining shall be
used with understanding and caution, the methods should
be cross-checked with respect to each other as well as with
respect to the reference system.

5. Conclusions

To conclude, we have presented a flexible toolkit for
developing and testing coarse-graining methods. Three of
them, namely iterative Boltzmann inversion, inverse Monte
Carlo, and force matching, have been implemented. With
the help of the developed toolkit, we have coarse-grained
liquid water, methanol, and propane and a single molecule
of hexane. We have also illustrated several advantages as
well as shortcomings of the implemented methods. For
example, inverse Monte Carlo has an update function which
is more efficient than that of the iterative Boltzmann
inversion method. On the other hand, inverse Monte Carlo
is very sensitive to the system size and the statistical
averaging. We have also discussed problems one might
encounter when using force matching due to incompleteness

of the basis set used to represent the coarse-grained potential
energy surface. It should always be kept in mind that the
coarse-grained systems are physically different to the refer-
ence systems and that the coarse-graining methods cannot
be used as a black box and require thorough cross-checking.

We shall also mention that the toolkit has an interface to
the fast molecular orbital overlap calculations library and
kinetic Monte Carlo code. Combined, these three packages
have already been used to study self-assembly and charge
transport in organic semiconductors.**->

The source code of VOTCA is available on request and
will soon be released under a public license.
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Appendix

A. Force Matching Using Cubic Splines. Implementa-
tions of force matching using different basis functions (linear
splines, cubic splines, and step functions) and different
methods for solving the least-squares problem (QR decom-
position, singular value decomposition, iterative techniques,
and normal matrix approach) are discussed in detail in ref
45.

Here, we outline the implementation using cubic splines
as basis functions, QR-decomposition for solving the least-
squares problem, and block averaging to sample large
trajectories.
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In our implementation the force f,({ry}) acting on bead i
due to an interaction y; with the potential U,, can be written as

£ = —VUdr))
_ _au
= ~SV(in) (19)
= _fyivil(({rk})

where k =r, b, 6, and ¢ denotes the type of interaction and
V., is the gradient with respect to the coordinates r; of bead i.
The variable « can label nonbonded interactions, bonds, angles,
or dihedral angles, which are given by the distance between
the two beads, the bond length, and the angle, which depends
on three beads or on the dihedral angle defined using four beads,
respectively. Now, the total force f&, acting on coarse-grained
bead i, can be expressed in terms of the coarse-grained
interactions, and eq 16 can be rewritten as

DLWVl = f5' (20)
Vi

where y; enumerates all interactions acting on bead i.
(k) is interpolated using cubic splines connecting a set of
points {xy}:

Sn(K’ {Kk}» {f}c}’ {fl,(l}) = An(K)fn
+ B,k
+ cuwry 4D
+ Dn(K)f;LtH

where {f;}and {f;} are tabulations of f(x) and its second
derivative on the grid {k;}, the parameters {f;} and {f;} are
obtained from the fit, ¥ € [k, k,+1], and the coefficients A,,
B,, C,, and D, have the following form:

A ( ) | K — Kn
a\K) = -
hn+l
B ( ) K= KI'L
n K =
hn+l
C (K) — 1 2 l(K - Kn)3 1/’1
n Sl = k) 6 h. 3 w1k~ c,)
1k —Kk) 1
Dn(K) = _—n . —
hn+1 6hn+l(K Kn)

(22)

where h, = k,+1 — K.
An additional requirement on the spline coefficients is the
continuity of the first derivatives:

An("nﬂ),fn + Bn(Kn+1)lf;l+l + Cn("nﬂ)’f;[ +
Dn("nﬂ)’f;[ﬂ = An+l(Kn+l)lf;rH + Bn+l(Kn+l)lf;z+2 +
Cn+l(Kn+l)lfl/1’+l + Dn+l(Kn+1),f;1,+2 (23)

If the total number of grid pointsis N+ 1 (n =0, 1, ..,
N), then these conditions are specified for the points n = 0,
1, ..., N — 1. For nonperiodic potentials, the end points are
treated using normal boundary conditions, i.e., fo = 0 and
fv=0.
Due to the spline fitting, eq 20 simplifies to a set of linear
equations with respect to the fitting parameters f, and f,. The
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complete set of equations to solve, therefore, consists of eq 20
and constraints, eq 23. Strictly speaking, this set of equations
cannot be solved in a least-squares sense using simple QR
decomposition. The reason is that the constraints shall be
satisfied exactly to ensure the continuity of the first derivative
of the potential, which is not the case if they are treated in a
least-squares sense. To solve the problem, one, in principle, has
to use a constrained least-squares solver.”' From a practical point
of view, however, it is simpler to treat the constraints in a least-
squares sense for each block. This will only lead to a piecewise
smooth potential, but the smoothness can be “recovered” by
averaging over the blocks.
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polymer chain in vacuum with appropriate exclusions.'

(59) Note that, as before, we ignored an irrelevant normalization
prefactor Z.

(60) Checking the linear correlation coefficient does not guarantee
statistical independence of variables, for example c(x, x?) =
0 if x has a symmetric probability density P(x) = P(—x). This
case is often encountered in systems used for coarse-
graining.>*>* The concept is illustrated in section IV for liquid
propane and a single molecule of hexane.

(61) Note that eq 7 is nothing else but a numerical scheme that
allows one to match the coarse-grained and the reference
distribution functions. It can be seen as a firstorder correction
to the interaction potential with respect to a gas of non-
interacting particles. Indeed, in an ideal gas, the probability
of finding two particles at a distance r is P’ = 412, which
is equivalent to the statement that the radial distribution
function of an ideal gas is 1. Substituting P into eq 7 we
obtain the first iteration UV = —kgT In(P/47r?), which is
the potential of mean force, eq 2.

(62) A formal statistical mechanical framework of force matching
applied to a liquid state, or a multiscale coarse-graining
method, is given in ref 54.

(63) http://www.espresso-pp.de.

(64) More detailed analyses have shown that, for small boxes, an
additional linear term in the potential update at large separa-
tions appear. To determine the origin of this term, AU was
calculated using the full matrix Az as well as only its diagonal
elements. The potential after 50 IBI iterations was taken as
an initial guess. Without the off-diagonal elements AU was
small once the reference and coarse-grained radial distribution
functions were matching each other. Inclusion of the off-
diagonals elements always resulted in an additional, practically
linear, term in the potential update which became smaller for
large boxes. Based on this observation we concluded that the
off-diagonal elements of the matrix Ays systematically change
with the box size.

(65) The united atom model we use here shall not be confused
with the united atom models commonly used in the atomistic
force-field community, for example OPLS-UA forcefield.***°
The latter models map the potentials, which are analytical
functions of bonds, angles, and dihedral angles, onto thermo-
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(66)

dynamic properties of the corresponding substances. In our
case coarse-grained potentials are tabulated functions of
coarse-grained variables and only the mapping (hydrogens
embedded into heavier atoms) is similar to that of the united
atom force-fields.

For condensed phase systems, the error introduced by the off-
plane component of the force might be compensated by some
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other pair interactions. In this particular case, however, coarse-
graining of liquid hexane with both bonded and non-bonded
degrees of freedom treated simultaneously results in a very
similar angular distribution to that of a single molecule in
vacuum.

CT900369W



