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In the present paper we investigate macroscopic two-fluid effects in systems composed of two elastic media.
Using two strain tensors as macroscopic variables, we present a nonlinear analysis in the regime of long
wavelengths and low frequencies. We also discuss the description in terms of relative strains and total strains.
Generalizing earlier work on relative rotations for systems such as nematic elastomers or uniaxial magnetic gels,
we investigate how this concept can be applied to the case of two elastic media in the linear domain. For the two
strain fields and relative rotations between the two elastic media, we find a number of reversible and dissipative
cross-coupling terms that couple velocity differences, mean velocities, strain fields, and relative rotations to
each other as well as to temperature and concentration gradients. The question of relative translations is also
analyzed. A linearized description using relative translations is physically meaningful as well as technically
consistent with using strain fields and relative rotations. Finally, we apply this description to the swinging of
two coupled homogeneous elastic media relative to each other, and to the oscillating actuation or active stress
introduced through one of the elastic compounds.
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I. INTRODUCTION

There are many elastic and viscoelastic composite materi-
als ranging from interpenetrating hydrogel polymer networks
[1] over fiber networks embedded in a matrix [2,3], mi-
crotubuli coupled to the elastic cytoskeleton in cells [4],
polymeric materials reinforced by carbon nanotubes [5], block
copolymers [6,7], to concrete (see Ref. [8], and references
therein). A large fraction of the studies of such composite
materials is addressing the optimization of static elastic prop-
erties by varying the concentration of the various components,
the rigidity, and the particle size. References [1–10] give
a cross section of these efforts to characterize, by several
different techniques, the static elastic and also viscoelastic
properties of such multicomponent materials.

Several of the individual constituents of the mentioned
viscoelastic composite systems are anisotropic; for instance,
fibers or microtubuli. However, they may be arranged in a
disordered state so that their macroscopic response appears
isotropic. In the present paper, we restrict our analysis to
isotropic materials. For example, it is well known how to
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generalize material laws of elasticity for isotropic solids to
anisotropic solids; compare, e.g., Ref. [11] for linear crystal
elasticity. We emphasize that the structure of the under-
lying constitutive equations is unchanged by considering
anisotropic instead of isotropic materials, while the number
of independent coefficients in the associated property tensors
will vary significantly. As for linear elasticity, we have two
independent elastic coefficients for isotropic materials but 21
coefficients for triclinic substances.

This situation has further developed in recent years, when
in systems that can be controlled by external fields, such as
magnetic fields in the case of magnetic elastomers [12,13],
particularly the dynamic and viscoelastic properties as well as
the dynamics of the patterns formed inside the materials are
increasingly investigated. In addition to traditional rigid com-
pound solids, the study of functionalized compound materials
emerges. For example, an individual component in such mul-
ticomponent systems may already constitute a functionalized
material by itself, e.g., a liquid crystalline gel or an elastomer
functionalized by magnetic inclusions.

A general framework to derive the macroscopic dynamic
equations for systems with two immiscible subsystems has
been set up in Refs. [14,15]. In these two references a first
set of applications to immiscible fluid mixtures, a two-fluid
system for which one fluid is nematic and a two-fluid sys-
tem with one strain field characteristic for a solid has been
studied as well [14,15]. In the field of bioinspired nonequilib-
rium systems the polar dynamic preferred direction emerges
as a second velocity field. This feature has been exploited
to derive the active polar two-fluid macroscopic dynamics
for such a system [16]. The approach has been general-
ized to incorporate a viscoelastic background [17] thus also
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addressing transient and/or permanent networks. Quite re-
cently [18] the macroscopic approach has been applied to
two-fluid effects in magnetorheological fluids, thus demon-
strating its applicability to device-related questions such as the
tunability of a material by moderate external magnetic fields.
We here generalize the approach to two-component materi-
als that both may feature elastic properties, thus extending a
previous macroscopic two-component description [8] to the
two-fluid dynamical regime.

Historically the best characterized and studied two-fluid
systems are superfluids, namely, superfluid 4He and the su-
perfluid phases of 3He [19–25]. However, in those quantum
systems, the second (or superfluid) velocity is due to the
spontaneously broken gauge symmetry, and is therefore a
truly hydrodynamic degree of freedom. This situation must
be contrasted with two-fluid effects in all the other systems
discussed above and with the systems to be examined in
the following that are not superfluid. In this case only the
barycentric velocity is a truly hydrodynamic variable and has
no gap in the excitation spectrum in the long wavelength
limit. In contrast, the relative velocity, although long lived and
therefore kept on the list of macroscopic variables, acquires a
gap for small wave vectors.

In systems composed of two subsystems, which can be
rotated relative to each other, relative rotations can emerge
as macroscopic variables. As examples of such materials, we
mention relative rotations in liquid crystalline elastomers as
pioneered by de Gennes [26] and uniaxial magnetic gels [27].
Quite recently it has become clear that relative rotations are
also of interest in ferromagnetic gel phases with tetrahedral
order [28]. For a generalization of the concept of relative
rotations to the nonlinear domain we refer to Refs. [29–31].

Finally we also address the question of relative translations
for the type of solid systems studied here, which could come
as macroscopic variables, in general, in addition to the two
strain fields and the relative rotations mentioned already. It
turns out that only linearized relative translations are physi-
cally sensible in order to obtain a consistent picture.

In classical elastostatics the focus is typically on the La-
grange version of the strain tensor. In contrast we will use
the Euler description throughout, because we also want to
incorporate dynamic constitutive equations or material laws.
Various detailed aspects of this description have been given
in Refs. [32–38]. In case one is interested to study nonlinear
effects for large strains, we refer to Refs. [39,40], where this
has been analyzed in the framework of transient nonlinear
elasticity.

The paper is organized as follows. The bulk is dedicated
to the study of the nonlinear macroscopic behavior of sys-
tems with two strain fields. Their description is given in
Secs. II (macroscopic variables), III (statics), IV (dynam-
ics), V (dissipative currents), and VI (reversible currents). In
Sec. VII we discuss how relative rotations enter the picture,
and in Sec. VIII we analyze the incorporation of relative
translations. Two basic minimal example situations are con-
sidered in Sec. IX. They illustrate the importance of the
central aspect in the present work, namely, including separate
macroscopic velocity variables for both components in elastic
composite materials. We summarize our work while providing
conclusions and perspectives in Sec. X. In Appendix A we

demonstrate how the complexity of the dynamic strain equa-
tions may be reduced by different types of approximations,
and in Appendix B we recall some general details of two-fluid
hydrodynamics.

II. VARIABLES

The hydrodynamics of an elastic continuum is described
by the momentum density gi, the mass density ρ, and the
total energy density ε representing the local conservation laws
of a fluid, as well as by the strain tensor Ui j . The latter is
symmetric and quantifies elastic deformations. Often, elastic-
ity is described using a field ui denoting the displacement of
any point of the continuum. For a crystal ui is the symmetry
variable of the spontaneously broken translational symmetry.
Since it contains also spatially homogeneous translations and
homogeneous rotations that both do not lead to elastic defor-
mations, one takes symmetrized gradients of ui, in particular
Ui j = (1/2)(∇iu j + ∇ jui − [∇kui][∇ku j]). Note that hydro-
dynamics uses the Eulerian picture, where all variables are
space-time fields in the (usually Cartesian) laboratory space.
In contrast, in elastostatics often the Lagrangian picture is
used, where elastic deformations are described in the frame
of the deformed body (because no other hydrodynamic vari-
ables are present). This immediately leads to the observation
that ui is not suitable as a variable in (nonlinear) hydrody-
namics, since it is interpreted differently in the Eulerian and
Lagrangian picture. Fortunately, it is possible to define and in-
troduce Ui j without making any reference to ui. For a thorough
discussion of these points, see Refs. [32–34].

In a system composed of two elastic media, the elastic
properties are described by two strain fields U (1)

i j and U (2)
i j .

Likewise, we can use the linear combinations, total strain,
2U (tot)

i j = U (1)
i j + U (2)

i j , and relative strain [8], 2U (rel)
i j = U (1)

i j −
U (2)

i j . There are two mass densities ρ (n) and two velocities v
(n)
i

giving rise to two momentum densities g(n)
i = ρ (n)v

(n)
i with

n ∈ {1, 2}. Often, one uses as variables the total mass density
ρ ≡ ρ (1) + ρ (2) and a concentration variable φ ≡ ρ (1)/ρ, as
well as the total momentum density gi ≡ g(1)

i + g(2)
i and the

relative velocity wi ≡ v
(1)
i − v

(2)
i . For details of these two-

fluid aspects, see Ref. [14].
In a system composed of two elastic media, a simultaneous

and identical rigid translation of both subsystems does not
change the internal state and is therefore not included as
a variable in our description (as in the single-elastic case).
However, relative translations between the two subsystems,
u(rel)

i ≡ u(1)
i − u(2)

i , are variables to be included, describing,
e.g., homogeneous relative translations. We will discuss this
type of variable, and its couplings to the others, in Sec. VIII
separately.

In addition, in a system composed of two elastic media,
a rigid combined simultaneous rotation of both subsystems
is equivalent to a rotation of the inertial system and must
not change the internal state of the media (as in the single-
elastic case). Relative rotations between the two subsystems,
however, are macroscopic variables. They are not related to
any conservation law or broken symmetry, but may relax in a
finite time, if the two subsystems are coupled to each other.
Therefore, they are relevant, if their relaxation times are in
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the time range of the other (hydrodynamic) variables. We
will deal with the dynamics of relative rotations in Sec. VII
separately.

The first law of thermodynamics relates changes of the
variables to changes of the energy density ε by the Gibbs
relation [41,42]

dε = T dσ + μ dρ + � dφ + v · dg + m · dw

+�
(1)
i j dU (1)

i j + �
(2)
i j dU (2)

i j , (1)

where we can likewise replace �
(1)
i j dU (1)

i j + �
(2)
i j dU (2)

i j by

�
(tot)
i j dU (tot)

i j + �
(rel)
i j dU (rel)

i j . The entropy density σ represents
the thermal degree of freedom of the system. The appropriate
thermodynamic conjugates are the temperature T , the chem-
ical potential μ, the osmotic pressure (times the density ρ)
�, the mean velocity vi = gi/ρ, the conjugate field mi, and
the two elastic stress fields, �

(1)
i j and �

(2)
i j , or likewise the

total elastic stress field 2�
(tot)
i j = �

(1)
i j + �

(2)
i j and the relative

elastic stress field 2�
(rel)
i j = �

(1)
i j − �

(2)
i j . The corresponding

framework for pure two-component fluids in the absence of
elasticity is briefly reviewed in Appendix B.

Rotational invariance of the Gibbs relation (1) including
elasticity leads to the condition

U (1)
ik �

(1)
k j + U (2)

ik �
(2)
k j = U (1)

jk �
(1)
ki + U (2)

jk �
(2)
ki . (2)

From the requirement that the energy of the system is a first-
order Eulerian form of all extensive variables, one gets for the
pressure p ≡ −(∂/∂V )

∫
ε dV the Gibbs-Duhem relation

d p = σ dT + ρ dμ − � dφ + g · dv

− m · dw − �
(1)
i j dU (1)

i j − �
(2)
i j dU (2)

i j . (3)

III. STATICS

The static behavior of our macroscopic system is conve-
niently described by the energy functional

ε = T

2CV
(δσ )2 + 1

2κφ

(δφ)2 + 1

2ρ2κμ

(δρ)2 + 1

αφ

(δφ)(δσ ) + 1

ραρ

(δρ)(δσ ) + 1

ρκπ

(δρ)(δφ)

+ 1

2
c(11)

tr Ũ (1)
i j Ũ (1)

i j + 1

2
c(22)

tr Ũ (2)
i j Ũ (2)

i j + c(12)
tr Ũ (1)

i j Ũ (2)
i j + 1

2
c(11)

l U (1)
kk U (1)

ll + 1

2
c(22)

l U (2)
kk U (2)

ll + c(12)
l U (1)

kk U (2)
ll

+ 1

α1
U (1)

kk δσ + 1

α2
U (2)

kk δσ + 1

ρκu1
U (1)

kk δφ + 1

ρκu2
U (2)

kk δφ + 1

ρκρ1
U (1)

kk δρ + 1

ρκρ2
U (2)

kk δρ, (4)

from which the conjugate fields follow by partial derivation according to the Gibbs relation, Eq. (1),

δT = T

CV
δσ + 1

αφ

δφ + 1

ραρ

δρ + 1

α1
U (1)

kk + 1

α2
U (2)

kk , (5)

� = 1

κφ

δφ + 1

ρκπ

δρ + 1

αφ

δσ + 1

ρκu1
U (1)

kk + 1

ρκu2
U (2)

kk + w · g + ρw2(1 − 2φ), (6)

μ = 1

ρ2κμ

δρ + 1

ρκπ

δφ + 1

ραρ

δσ + 1

ρκρ1
U (1)

kk + 1

ρκρ2
U (2)

kk + w2φ(1 − φ), (7)

�
(1)
kk = c(11)

l U (1)
kk + c(12)

l U (2)
kk + 1

α1
δσ + 1

ρκu1
δφ + 1

ρκρ1
δρ, (8)

�
(2)
kk = c(22)

l U (2)
kk + c(12)

l U (1)
kk + 1

α2
δσ + 1

ρκu2
δφ + 1

ρκρ2
δρ, (9)

�̃
(1)
i j = c(11)

tr Ũ (1)
i j + c(12)

tr Ũ (2)
i j , (10)

�̃
(2)
i j = c(22)

tr Ũ (2)
i j + c(12)

tr Ũ (1)
i j . (11)

We have split the strain fields and the elastic stresses into
traces, U (1,2)

kk , �
(1,2)
kk , and traceless parts, Ũ (1,2)

i j = U (1,2)
i j −

(1/3)δi jU
(1,2)
kk , �̃

(1,2)
i j = �

(1,2)
i j − (1/3)δi j�

(1,2)
kk , which is

common in isotropic linear elasticity. There are six static
susceptibilities from the binary mixture fluid (CV , αφ , αρ , κφ ,
κπ , and κμ), six elastic Hooke-like moduli from the two elastic
media (longitudinal c(11,12,22)

l and transverse c(11,12,22)
tr ), and

six general susceptibilities describing the cross-coupling
between the fluid and the elastic degrees of freedom (α1, α2,
κu1, κu2, κρ1, and κρ2). In linear approximation there is one
coefficient related to relative translations and relative rotations
(cf., respectively, Secs. VII and VIII below), and there are no
static cross-couplings to other variables. It should be noted

that for real solids at finite temperatures U (n)
kk �= δρ (n)/ρ

in contrast to ideal elasticity theory. The reason is the point
defects, which allow not only the dissipative motion described
below, but also static temperature and pressure changes due
to U (n)

kk even at constant density.
The set of static relations, Eqs. (5)–(11), includes linear

elasticity described by bilinear expressions of the strains in the
energy functional. A generalization to nonlinear elasticity is
conveniently achieved, e.g., by adding appropriate nonlinear
expressions beyond the harmonic approximation to the energy
functional (cf. Refs. [39,40]). The elastic coefficients of each
component of a composite material can vary by many orders
of magnitude. For example, the elastic Young’s modulus, E ,
ranges from several hundred GPa for metals like osmium [43]
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down to values of around 1 Pa for soft gels [44], which consti-
tutes as much as 11 orders of magnitude. There is also a rich
literature on how to incorporate higher-order elastic effects
such as third-order elasticity into a macroscopic description.
Compare, for example, Refs. [32,34] for general aspects and
Refs. [39,40] for polymeric-type materials. As for the pressure
dependence of static susceptibilities, such as elastic constants,
we have expanded the generalized energy density ε, Eq. (4),
up to second order in the changes of the macroscopic variables
entropy density δσ , density δρ, concentration δφ, and in the
strain tensors U (1,2)

i j . Thus, the expansion coefficients, e.g., the
elastic moduli, here are assumed to be constant. To obtain, for
instance, the pressure dependence of the elastic coefficients,

one has to calculate their derivatives with respect to pressure,
ideally involving the appropriate equation of state.

Finally, the remaining relations between conjugates and
variables

vi = gi

ρ
and mi = φ(1 − φ)ρ wi ≡ α wi (12)

are not really static, but nevertheless follow from the energy
density, in particular from the kinetic energy density εkin =
(1/2ρ (1) )[g(1)]2 + (1/2ρ (2) )[g(2)]2 = (1/2)g2+ (α/2)w2. The
wi dependence of the chemical potential and the osmotic
pressure are due to the ρ and φ dependence of α.

IV. DYNAMICS

The dynamic equations for the elastomeric and fluid degrees of freedom are

ε̇ + ∇i(ε + p)vi + ∇i
(

j (ε)R
i + j (ε)D

i

) = 0, (13)

σ̇ + ∇i
(
σvi + j (σ )R

i + j (σ )D
i

) = 2R/T, (14)

ρ̇ + ∇ jρ v j = 0, (15)

φ̇ + v j∇ jφ + ρ−1∇i
[
ρφ(1 − φ)wi + j (1)R

i + j (1)D
i

] = 0, (16)

ġi + ∇ jgiv j + ∇i p + ∇ j
(−�

(tot)
i j + σ

(conv)
i j + σ R

i j + σ D
i j

) = 0, (17)

ẇi + v j∇ jwi + ∇i(ρ
−1�) + X R

i + X D
i = 0, (18)

U̇ (1)
i j + vk∇kU

(1)
i j + U (1)

k j ∇ivk + U (1)
ki ∇ jvk − Ai j + Z (1)R

i j + Z (1)D
i j = 0, (19)

U̇ (2)
i j + vk∇kU

(2)
i j + U (2)

k j ∇ivk + U (2)
ki ∇ jvk − Ai j + Z (2)R

i j + Z (2)D
i j = 0, (20)

with 2Ai j = ∇iv j + ∇ jvi, and R the energy dissipation function. The elastic convective stress is

σ
(conv)
i j = �

(1)
jk U (1)

ik + �
(1)
ik U (1)

jk + �
(2)
jk U (2)

ik + �
(2)
ik U (2)

jk = �
(tot)
jk U (tot)

ik + �
(tot)
ik U (tot)

jk + �
(rel)
jk U (rel)

ik + �
(rel)
ik U (rel)

jk . (21)

These equations follow from Refs. [14,32,33] and contain, apart from the reversible (superscript R) and irreversible, dissipative
(superscript D) phenomenological currents, also transport, convection, and translation whenever appropriate. The latter are
reversible and, indeed, all transport contributions (including the isotropic pressure) add up to zero entropy production. The
convective parts in the strain equations are compensated by σ

(conv)
i j , and the translational term (Ai j) gives rise to the elastic

stresses. Instead of Eqs. (19) and (20) one can likewise use

U̇ (tot)
i j + vk∇kU

(tot)
i j + U (tot)

k j ∇ivk + U (tot)
ki ∇ jvk − Ai j + Z (tot)R

i j + Z (tot)D
i j = 0, (22)

U̇ (rel)
i j + vk∇kU

(rel)
i j + U (rel)

k j ∇ivk + U (rel)
ki ∇ jvk + Z (rel)R

i j + Z (rel)D
i j = 0, (23)

where 2Z (tot)∗
i j = Z (1)∗

i j + Z (2)∗
i j and 2Z (rel)∗

i j = Z (1)∗
i j − Z (2)∗

i j , for ∗ ∈ {R, D}.
In the whole set of dynamic equations the mean velocity vi has been chosen as the convective velocity for all variables.

This ensures zero entropy production of the convective derivatives including the corotational and the translational parts. Due to
various material dependent contributions in the reversible currents (see below), the actual convective velocities can be different
from vi and can be specific for the different variables.

For the phenomenological parts of the currents the second law of thermodynamics requires

R = − j (σ )∗
i ∇iT − j (1)∗

i ∇i(�/ρ) − σ ∗
i j ∇ jvi + �

(1)
i j Z (1)∗

i j + �
(2)
i j Z (2)∗

i j + mi X ∗
i � 0 (24)

with the equal sign (> sign) for ∗ = R (∗ = D).
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V. DISSIPATIVE CURRENTS

The dissipative parts of the currents introduced above can be deduced from a potential, the dissipation function R, that reads
in bilinear approximation

2R = κ (∇T )2 + D(∇�)2 + 2D(T )(∇T ) · (∇�) + ξ ′m2 + ζ
(11)
i jkl �

(1)
i j �

(1)
kl + ζ

(22)
i jkl �

(2)
i j �

(2)
kl + 2ζ

(12)
i jkl �

(1)
i j �

(2)
kl

+ νi jkl (∇ jvi )(∇lvk ) + 2ν
(c)

i jkl (∇ jvi )(∇lmk ) + ν
(w)

i jkl (∇ jmi )(∇lmk )

+ ξ
(11)
l

(∇k�
(1)
ik

)(∇l�
(1)
il

) + ξ
(22)
l

(∇k�
(2)
ik

)(∇l�
(2)
il

) + 2ξ
(12)
l

(∇k�
(1)
ik

)(∇l�
(2)
il

)
+ ξ

(11)
tr

(∇i�
(1)
kk

)(∇i�
(1)
ll

) + ξ
(22)
tr

(∇i�
(2)
kk

)(∇i�
(2)
ll

) + 2ξ
(12)
tr

(∇i�
(1)
kk

)(∇i�
(2)
ll

)
+ 2κ1

(∇i�
(1)
kk

)
(∇iT ) + 2κ2

(∇i�
(2)
kk

)
(∇iT ) + 2d1

(∇i�
(1)
kk

)
(∇i�) + 2d2

(∇i�
(2)
kk

)
(∇i�), (25)

where all four-rank material tensors have the form νi jkl = νlδi jδkl + νtr[δikδ jl + δilδ jk − (2/3)δi jδkl ]/2 and contain two pa-
rameters each. The parameters ζl and ζtr describe the relaxation of elastic strains in the case of nonpermanent elastic media.
Conversely, the parameters ξl,tr quantify diffusion that takes place even in permanent elastic media due to vacancy diffusion. In
elasticity theory very often the latter is neglected and the dynamics of strains is considered to be purely reversible. Concerning
the diagonal elements of R, which quantify diffusion or relaxation of a single variable, all diagonal coefficients must be positive,
in particular κ, D, ξ ′, ζ (11)

l , ζ
(22)
l , ζ

(11)
tr , ζ

(22)
tr , νl , νtr, ν

(w)
l , ν

(w)
tr , ξ

(11)
tr , ξ

(22)
tr , ξ

(11)
l , ξ

(22)
l . Moreover, the cross-coupling coefficients

are bound in magnitude to guarantee R > 0 and have to obey

(D(T ) )2 < κD,
(
ζ

(12)
l

)2
< ζ

(11)
l ζ

(22)
l ,

(
ζ

(12)
tr

)2
< ζ

(11)
tr ζ

(22)
tr ,

(
ν

(c)
l

)2
< νlν

(w)
l ,

(
ν

(c)
tr

)2
< νtrν

(w)
tr ,

(
ξ

(12)
tr

)2
< ξ

(11)
tr ξ

(22)
tr ,

(
ξ

(12)
l

)2
< ξ

(11)
l ξ

(22)
l , κ2

1 < κξ
(11)
tr , κ2

2 < κξ
(22)
tr , d2

1 < Dξ
(11)
tr , d2

2 < Dξ
(22)
tr . (26)

From Eq. (25) the following dissipative currents are obtained:

j (σ )D
i = −(∂R)/(∂∇iT ) = −κ∇iT − φ(1 − φ)d (T )∇i� − κ1∇i�

(1)
kk − κ2∇i�

(2)
kk , (27)

Z (1)D
i j = (δR)/

(
δ�

(1)
i j

) = ζ
(11)
l δi j�

(1)
kk + ζ

(12)
l δi j�

(2)
kk + ζ

(11)
tr �̃

(1)
i j + ζ

(12)
tr �̃

(2)
i j

− 1
2∇ j

(
ξ

(11)
tr ∇k�

(1)
ik + ξ

(12)
tr ∇k�

(2)
ik

) − 1
2∇i

(
ξ

(11)
tr ∇k�

(1)
jk + ξ

(12)
tr ∇k�

(2)
jk

)
− δi j∇k

(
ξ

(11)
l ∇k�

(1)
ll + ξ

(12)
l ∇k�

(2)
ll

) − κ1δi j∇2T − d1δi j∇2�, (28)

Z (2)D
i j = (δR)/

(
δ�

(2)
i j

) = ζ
(22)
l δi j�

(2)
kk + ζ

(12)
l δi j�

(1)
kk + ζ

(22)
tr �̃

(2)
i j + ζ

(12)
tr �̃

(1)
i j

− 1
2∇ j

(
ξ

(22)
tr ∇k�

(2)
ik + ξ

(12)
tr ∇k�

(1)
ik

) − 1
2∇i

(
ξ

(22)
tr ∇k�

(2)
jk + ξ

(12)
tr ∇k�

(1)
jk

)
− δi j∇k

(
ξ

(22)
l ∇k�

(2)
ll + ξ

(12)
l ∇k�

(1)
ll

) − κ2δi j∇2T − d2δi j∇2�, (29)

σ D
i j = −(∂R)/(∂∇ jvi ) = −νi jkl ∇lvk − ν

(c)
i jkl ∇lmk, (30)

X D
i = (δR)/(δmi ) = ξ ′mi − ∇ j

(
ν

(w)
i jkl ∇lmk + ν

(c)
kli j ∇lvk

)
, (31)

j (1)D
i = −ρ(∂R)/(∂∇i�) = −ρ D ∇i� − ρ φ(1 − φ) d (T )∇iT − d1ρ∇i�

(1)
kk − d2ρ∇i�

(2)
kk , (32)

where the relaxation of wi is given by the inverse relaxation time ξ ≡ αξ ′ and where thermodiffusion is written in the usual way
with D(T ) = φ(1 − φ)d (T ). If the relative elasticity is relaxing and the total elasticity is permanent, the relaxation parameters
have to fulfill ζ

(11)
l,tr = ζ

(22)
l,tr = −ζ

(12)
l,tr , which governs the relaxation of the former, while for the latter only vacancy diffusion is

left. The relative velocity, wi, always relaxes, because it is not related to any broken symmetry, nor to a conservation law. All
other variables are conserved and show diffusional behavior.

VI. REVERSIBLE CURRENTS

For the reversible parts of the currents in Eqs. (14) and (16)–(20) we find

Z (1)R
i j = 1

2β
(1)
5 (∇im j + ∇ jmi ) + β

(1)
7

(
U (1)

k j ∇imk + U (1)
ki ∇ jmk

) + β
(1)
6 mk∇kU

(1)
i j

+β
(1)
9

(
U (2)

k j ∇imk + U (2)
ki ∇ jmk

) + β
(1)
8 mk∇kU

(2)
i j , (33)

Z (2)R
i j = 1

2β
(2)
5 (∇im j + ∇ jmi ) + β

(2)
7

(
U (2)

k j ∇imk + U (2)
ki ∇ jmk

) + β
(2)
6 mk∇kU

(2)
i j

+β
(2)
9

(
U (1)

k j ∇imk + U (1)
ki ∇ jmk

) + β
(2)
8 mk∇kU

(1)
i j , (34)

174304-5



PLEINER, MENZEL, AND BRAND PHYSICAL REVIEW B 103, 174304 (2021)

X R
i = β1∇iT + γ∇i(�/ρ) + β2w j (∇ jvi + ∇iv j ) + β3mj (∇ jwi − ∇iw j ) + β4w j (∇ jvi − ∇iv j )

− β
(1)
6 �

(1)
k j ∇iU

(1)
k j − β

(2)
6 �

(2)
k j ∇iU

(2)
k j − β

(1)
8 �

(1)
k j ∇iU

(2)
k j − β

(2)
8 �

(2)
k j ∇iU

(1)
k j

+ ∇ j
(
β

(1)
5 �

(1)
i j + β

(2)
5 �

(2)
i j + 2β

(1)
7 �

(1)
k j U (1)

ik + 2β
(2)
7 �

(2)
k j U (2)

ik + 2β
(1)
9 �

(1)
k j U (2)

ik + 2β
(2)
9 �

(2)
k j U (1)

ik

)
, (35)

j (σ )R
i = β1mi, (36)

j (1)R
i = γ mi, (37)

σ R
i j = 2β2miw j . (38)

All these reversible contributions depend on the relative velocity wi and vanish when there is only a single velocity. They add to
the reversible vi-dependent contributions already made apparent in Sec. IV, or they constitute new types of dynamic couplings.
Nonlinear contributions are included where they contribute to the transport and convection of variables. The γ term regulates the
transport of the concentration, the β1 term contributes to the transport of the entropy density, β2 to the transport of the momenta,
and β4 is related to the convection of the relative velocity. Next, the β5 contributions are related to translation, β6 to transport,
and β7 to convection of the strain fields. The contributions β8,9 couple the two strain fields dynamically.

In the most general case, the ten phenomenological reversible parameters, β
(1,2)
5...9 , allow for ten different combinations of the

two velocities in the dynamic equations or the strain fields, Eqs. (19) and (20). The most general dynamic form reads

U̇ (1)
i j + v̂

(11)
k ∇kU

(1)
i j + v̂

(12)
k ∇kU

(2)
i j + U (1)

k j ∇iv̆
(11)
k + U (1)

ki ∇ j v̆
(11)
k + U (2)

k j ∇iv̆
(12)
k + U (2)

ki ∇ j v̆
(12)
k − 1

2

(∇iṽ
(1)
j + ∇ j ṽ

(1)
i

) + Z (1)D
i j = 0,

(39)

U̇ (2)
i j + v̂

(22)
k ∇kU

(2)
i j + v̂

(21)
k ∇kU

(1)
i j + U (2)

k j ∇iv̆
(22)
k + U (2)

ki ∇ j v̆
(22)
k + U (1)

k j ∇iv̆
(21)
k + U (1)

ki ∇ j v̆
(21)
k − 1

2

(∇iṽ
(2)
j + ∇ j ṽ

(2)
i

) + Z (2)D
i j = 0.

(40)

The velocities v̂
(n,m)
i , v̆

(n,m)
i , and ṽ

(n)
i , with (n, m) ∈ {1, 2}, are linear combinations of the mean (vi) and the relative (wi)

velocity, or of v
(1)
1 and v

(2)
i . Details are given in Appendix A. Cross-couplings between the two strain fields are given by the

velocities v̂
(12)
k , v̂(21)

k , v̆(12)
k , and v̆

(21)
k , where generally we may have v̂

(12)
k �= v̂

(21)
k and v̆

(12)
k �= v̆

(21)
k , while all four are proportional

to the relative velocity.
Considering special cases by assigning specific values to the reversible transport parameters, Eqs. (39) and (40) for example

simplify to

U̇ (1)
i j + v̄

(1)
k ∇kU

(1)
i j + v̄

(3)
k ∇kU

(2)
i j + U (1)

k j ∇iv̄
(1)
k + U (1)

ki ∇ j v̄
(1)
k + U (2)

k j ∇iv̄
(3)
k + U (2)

ki ∇ j v̄
(3)
k − 1

2

(∇iv̄
(1)
j + ∇ j v̄

(1)
i

) + Z (1)D
i j = 0,

(41)

U̇ (2)
i j + v̄

(2)
k ∇kU

(2)
i j + v̄

(3)
k ∇kU

(1)
i j + U (2)

k j ∇iv̄
(2)
k + U (2)

ki ∇ j v̄
(2)
k + U (1)

k j ∇iv̄
(3)
k + U (1)

ki ∇ j v̄
(3)
k − 1

2

(∇iv̄
(2)
j + ∇ j v̄

(2)
i

) + Z (2)D
i j = 0,

(42)

with three linear combinations v̄
(1,2,3)
k of vi and wi. The first two, v̄

(1)
k and v̄

(2)
k , enter the translation, transport, and convection

of U (1)
i j and U (2)

i j , respectively, while v̄
(3)
k occurs in the coupling terms between them (see again Appendix A). Even simpler is

the “naive” model, where translation, transport, and convection occur through the velocities, v
(1)
i and v

(2)
i , associated with the

appropriate translation fields,

U̇ (n)
i j + v

(n)
k ∇kU

(n)
i j + U (n)

k j ∇iv
(n)
k + U (n)

ki ∇ jv
(n)
k − 1

2

(∇iv
(n)
j + ∇ jv

(n)
i

) + Z (n)D
i j = 0 (43)

with either n = 1 or n = 2. There is no dynamic coupling between systems 1 and 2. All β parameters are fixed (cf.
Appendix A).

With only one velocity vi (the relative velocity wi being relaxed to zero) only the trivial model

U̇ (n)
i j + vk∇kU

(n)
i j + U (n)

k j ∇ivk + U (n)
ki ∇ jvk − Ai j + Z (n)D

i j = 0 (44)

is possible. This has to be compared with Eqs. (52) and (53) of Ref. [8], rendering the parameters there to be a = 1 and bx = 1.
Another set of choices for the β parameters leads to a four-parameter model with no reversible dynamic coupling between

the total and the relative strains

U̇ (tot)
i j + v̄

(4)
k ∇kU

(tot)
i j + U (tot)

k j ∇iv̄
(5)
k + U (tot)

ki ∇ j v̄
(5)
k − 1

2

(∇iv̄
(6)
j + ∇ j v̄

(6)
i

) + Z (tot)D
i j = 0, (45)

U̇ (rel)
i j + v̄

(4)
k ∇kU

(rel)
i j + U (rel)

k j ∇iv̄
(5)
k + U (rel)

ki ∇ j v̄
(5)
k − 1

2

(∇iv̄
(7)
j + ∇ j v̄

(7)
i

) + Z (rel)D
i j = 0 (46)

(see once more, Appendix A).
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VII. RELATIVE ROTATIONS

While elastic strains are described by symmetric two-rank
tensors, rotations are related to antisymmetric second-rank
tensors, �i j ≡ −� ji. In linear order, rotations of the two elas-
tic media are related to the two translation vectors by 2�

(n)
i j =

∇iu
(n)
j − ∇ ju

(n)
i . Only relative rotations 2�

(rel)
i j = ∇iu

(rel)
j −

∇ ju
(rel)
i can be macroscopic variables. Relative rotations are

a common concept in anisotropic elastomers, e.g., nematic
ones, where rotations of the preferred direction relative to the
elastic network are important. For a nonlinear description of
relative rotations, compare Refs. [29–31].

The Gibbs relation, Eq. (1), has to be amended by

dε = . . . + W (rel)
i j d�

(rel)
i j , (47)

thereby defining the conjugate field W (rel)
i j . There is an addi-

tional −W (rel)
i j d�

(rel)
i j to the pressure differential in Eq. (3) and

another symmetry relation �
(rel)
ik W (rel)

k j = �
(rel)
jk W (rel)

ki .
In the statics of the considered isotropic materials, the

conjugate of relative rotations, W (rel)
i j , is given by

W (rel)
i j = D��

(rel)
i j . (48)

This equation shows that there is one static response coeffi-
cient (D�) that quantifies the overall energetic contribution

of relative rotations by themselves, relating relative rotations,
�

(rel)
i j , to the associated thermodynamic force, W (rel)

i j . It de-
scribes the stiffness of relative rotations and can be seen, for
example, as the analog of the static relation between elastic
stresses and strain fields, Eqs. (10) and (11).

The dynamic equation is written in terms of the mean
velocity

�̇
(rel)
i j + vk∇k�

(rel)
i j + �

(rel)
k j ∇ivk

−�
(rel)
ki ∇ jvk + Q(rel)R

i j + Q(rel)D
i j = 0, (49)

which facilitates the fulfillment of the thermodynamic
condition

R� = . . . + W (rel)
i j Q(rel)∗

i j � 0, (50)

with ∗ ∈ {R, D}, and where the . . . stand for the contribu-
tions given in Eq. (24). In particular, the (reversible) transport
term is compensated by all other transport contributions,
and the convective term requires an additional contribution
to the stress tensor, Eq. (21), σ

(conv)
i j = . . . + W (rel)

jk �
(rel)
ik +

W (rel)
ik �

(rel)
jk .

The dissipative current only contains the relaxation of the
relative rotations without any cross-coupling,

Q(rel)D
i j = τ�W (rel)

i j . (51)

For the reversible current we find

Q(rel)R
i j = β

(Q)
4 (∇im j − ∇ jmi ) + β

(Q)
5 (mi∇ jT − mj∇iT ) + β

(Q)
6 (mi∇ j� − mj∇i�)

+β
(Q)
7

(
mi∇k�

(1)
k j − mj∇k�

(1)
ki

) + β
(Q)
8

(
mi∇k�

(2)
k j − mj∇k�

(2)
ki

)
+β

(Q)
9 mk

(∇i�
(1)
k j − ∇ j�

(1)
ki

) + β
(Q)
10 mk

(∇i�
(2)
k j − ∇ j�

(2)
ki

) + β
(Q)
14 mk∇k�

(rel)
i j

+β
(Q)
15

(
�

(rel)
ik ∇ jmk − �

(rel)
jk ∇imk

) + β
(Q)
16

(
U (1)

k j ∇imk − U (1)
ki ∇ jmk

) + β
(Q)
17

(
U (2)

k j ∇imk − U (2)
ki ∇ jmk

)
. (52)

Due to the thermodynamic condition Eq. (50), the reversible currents give rise to the following additional terms in the other
reversible currents:

j (σ )R
i = . . . + 2β

(Q)
5 mjW

(rel)
ji , (53)

j (1)R
i = . . . + 2β

(Q)
6 mjW

(rel)
ji , (54)

X R
i = . . . + 2β

(�)
4 ∇ jW

(rel)
ji − β

(Q)
14 W (rel)

k j ∇i�
(rel)
k j + 2β

(Q)
15 ∇k

(
�

(rel)
i j W (rel)

k j

)
+2β

(Q)
16 ∇k

(
Ui jW

(rel)
k j

) + 2β
(Q)
17 ∇k

(
U (rel)

i j W (rel)
k j

)
, (55)

Z (1)R
i j = . . . + β

(Q)
7

(∇ jmkW
(rel)

ki + ∇imkW
(rel)

k j

) + β
(Q)
9 ∇k

(
miW

(rel)
k j + mjW

(rel)
ki

)
, (56)

Z (2)R
i j = . . . + β

(Q)
8

(∇ jmkW
(rel)

ki + ∇i mkW
(rel)

k j

) + β
(Q)
10 ∇k

(
miW

(rel)
k j + mjW

(rel)
ki

)
, (57)

which supplement the expressions given in Eqs. (33)–(37).
Through the reversible contributions in Eq. (52), the translation of Q(rev)

i j occurs with the velocity v̄
(lq)
i ≡ β

(Q)
4 αwi, the effective

transport velocity is v̄
(tq)
i ≡ vi + β

(Q)
14 αwi, and the convective velocity is v̄

(cq)
i ≡ vi + β

(Q)
15 αwi with α = φ(1 − φ)ρ. Thus, the

dynamic equation for �
(rel)
i j can be written as

�̇
(rel)
i j − (∇ j v̄

(lq)
i − ∇iv̄

(lq)
j ) + v̄

(tq)
k ∇k�

(rel)
i j + �

(rel)
k j ∇iv̄

(cq)
k − �

(rel)
ki ∇ j v̄

(cq)
k + Q̃(rel)R

i j + Q(rel)D
i j = 0 (58)

with Q̃(rel)R
i j given by Q(rel)R

i j , Eq. (52), without the β
(Q)
4 , β

(Q)
14 , and β

(Q)
15 terms. If there is only one velocity (the relative velocity

being relaxed to zero), comparison with Eq. (55) of Ref. [8] reveals that the parameter a there has to be a = 1.
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VIII. RELATIVE TRANSLATIONS

A homogeneous translation of a single-elastic medium
does not change the internal state of the system and is there-
fore not a macroscopic variable. Homogeneous translations of
the individual systems in a two-component elastic medium,
u(1)

i and u(2)
i , do change the internal state, if u(1)

i �= u(2)
i . Thus,

relative translations u(rel)
i ≡ u(1)

i − u(2)
i are to be put on the list

of variables. These variables are neither related to a conser-
vation law nor to a broken symmetry, and therefore relax in
a finite time. They are relevant, if the relaxation times are in
the time range of the other (hydrodynamic) variables. In addi-
tion, these variables are not covered by relative strains, U (rel)

i j ,
because the latter cannot describe homogeneous translations.

We amend the Gibbs relation in Eq. (1), defining the con-
jugate force �

(rel)
i , via

dε = . . . + �
(rel)
i du(rel)

i (59)

where the . . . represent all other variables. This also leads
to an additional term in the Gibbs-Duhem relation, Eq. (3),
d p = . . . − �

(rel)
i du(rel)

i , and to an additional symmetry rela-
tion u(rel)

i �
(rel)
j = u(rel)

j �
(rel)
i to guarantee rotational invariance

of the energy functional.
The statics of these degrees of freedom are simply given by

�
(rel)
i = cd u(rel)

i (60)

with a single coefficient cd .
In simplest approximation, the time evolution for homo-

geneous translations is u̇(1,2)
i = v

(1,2)
i , leading to the dynamic

equation for relative translations

u̇(rel)
i + z(rel)R

i + z(rel)D
i = 0, (61)

where z(rel)
i contains the phenomenological couplings to other

variables. Thermodynamics requires

R = . . . + �
(rel)
i z(rel)

i � 0 (62)

for dissipative (>) and reversible (=) contributions; the . . .

are the parts given in Eqs. (24) and (50).
Using the standard symmetry requirements and the as-

sumption that �
(rel)
i is homogeneous (as is ui), we get

z(rel)R
i = − β

(rt)
1 mi, (63)

X R
i = . . . + β

(rt)
1 �

(rel)
i , (64)

where X R
i is the reversible current of the relative velocity and

the . . . are given by Eqs. (35) and (55). We will choose β
(rt)
1 =

1/α, in order to comply with the naive model u̇(1,2)
i = v

(1,2)
i .

For the dissipative part we find cross-couplings to the time
evolution of the thermal degree of freedom and to the concen-
tration dynamics

z(rel)D
i = ζ (rt)�

(rel)
i − κ

(rt)
2 ∇iT − d (rt)

2 ∇i�, (65)

j (σ )D
i = . . . − κ

(rt)
2 �

(rel)
i , (66)

j (1)D
i = . . . − d (rt)

2 �
(rel)
i , (67)

where the . . . are given in Eqs. (27) and (32), respectively.

Note that the dynamic equation for u(rel)
i is fully linear,

e.g., a transport term ∼∇ku(rel)
i is absent, since we only con-

sider homogeneous relative translations. This is not a serious
restriction, because for physical reasons such relative transla-
tions have to be small. Moreover, inhomogeneous translations
∇ jui are already taken into account by strain variables and by
the relative rotations. The linear nature of the u(rel)

i dynamics
also avoids any problems connected with the possible use of
the displacement vector in order to describe nonlinear strains
or nonlinear relative rotations.

IX. ILLUSTRATIVE MINIMAL EXAMPLES

The central step of the present work is to extend a previous
macroscopic dynamic characterization of elastic or viscoelas-
tic composite systems [8] by including separate velocity
fields for each component. As it turns out, this extension is
necessary already to describe very basic intuitive dynamic
processes, as the two following minimal example situations
are intended to illustrate.

For this purpose, we shall reduce the above equations to
a minimum by confining ourselves to corresponding basic
scenarios. Accordingly, as a first and very common approx-
imation, we address so-called incompressible systems. This
implies κμ → 0 for the overall composite system in Eq. (4).
Tiny changes in density δρ then imply huge changes in pres-
sure via the chemical potential μ in Eq. (7) and according
to Eq. (1). Through Eqs. (15) and (17), the density ρ is then
regulated to remain approximately constant. For κμ → 0, this
process occurs sufficiently quickly so that we can consider it
as happening on a different scale, setting δρ = 0 in our evalu-
ations. Consequently, Eq. (15) drops out and only requires the
common relation ∇ivi = 0.

Moreover, couplings to variations in entropy density δσ

and temperature T as well as the dynamics of entropy den-
sity variations are not taken into account. Formally, this
means that αφ → ∞, αρ → ∞, α1 → ∞, and α2 → ∞ in
Eqs. (4)–(9). Similarly, in the dissipation function and dis-
sipative currents in Eqs. (25)–(32), we set κ1 = κ2 = 0 and
d (T ) = 0. The same applies to κ

(rt)
2 = 0 in Eqs. (65) and (66).

Likewise, the reversible couplings to temperature gradients
are not taken into account, setting β1 = 0 in Eqs. (35) and
(36). Consequently, the dynamic equation for variations in
entropy density, Eq. (14), is not evaluated. Furthermore, we
do not involve the effects of relative rotations summarized in
Sec. VII.

Instead, we focus on the remaining key dynamic quantities.
Here, these are the mean velocity vi and the relative velocity
wi (which is equivalent to considering the velocities v

(1)
i and

v
(2)
i of the two components as explained above), the two

strains U (1)
i j and U (2)

i j of the two-component elastic composite

material, relative displacements u(rel)
i between the two compo-

nents, and possibly the concentration φ. It appears reasonable
to first consider a fundamental but very important spatially
homogeneous dynamic situation. Afterwards, in our second
minimal example, we address a basic minimal dynamic sce-
nario that involves spatial variations.
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A. Swinging in a simple elastic composite material

In our first example, we step back to very basic elastic
composite materials consisting, e.g., of spherical inclusions as
a second component in an elastic matrix as a first component.
Both components should be perfectly permanently elastic,
that is, their deformations are completely reversible. Thus, we
impose ζ

(mn)
tr = 0 and ζ

(mn)
l = 0 [(mn) ∈ {(11), (12), (22)}] in

Eqs. (28) and (29). The same applies to their mutual purely
translational coupling, which should be permanently elastic
as well, so that we have ζ (rt) = 0 in Eq. (65) for the rel-
ative translations. In the following, we may even consider
the second component to be perfectly rigid, which can be
taken into account by setting c(22)

l → ∞ and c(22)
tr → ∞ in

Eqs. (4)–(11).
Searching for spatially homogeneous solutions, the system

of dynamic equations in Secs. IV and VIII for the relevant
remaining variables becomes

φ̇ = 0, (68)

ġi = 0, (69)

ẇi + ξ ′αwi + β
(rt)
1 cd u(rel)

i = 0, (70)

U̇ (1)
i j = 0, (71)

U̇ (2)
i j = 0, (72)

u̇(rel)
i − β

(rt)
1 αwi = 0, (73)

where here α = φ(1 − φ)ρ remains constant. Only two of
these dynamic equations are nontrivial, and we may combine
them. Solving the last equation for wi and inserting it into
Eq. (70), we find a decoupled dynamic equation for u(rel)

i ,

ü(rel)
i + ξ ′αu̇(rel)

i + (
β

(rt)
1

)2
cdαu(rel)

i = 0. (74)

Obviously, this represents the dynamic equation for a damped
harmonic oscillator. It describes the mutual swinging of the
two components against each other. Depending on the actual
values of the material parameters, all the different scenarios
for a harmonic oscillator can be observed. Illustratively, the
damping here naturally evolves from the friction arising when
the two subsystems move relatively to, or “through” each
other, described by the inverse relaxation time ξ = ξ ′α in
Eq. (31).

For the oscillations to become effective, initially a relative
translation or relative velocity needs to be excited. One could,
for example, mechanically shake from outside the elastic
matrix, that is, our first component. If the inclusions are of
significantly higher density, their buoyant effect retards their
motion, initiating a relative translation. Another possibility
would be to apply for magnetic inclusions an impulse of
an external magnetic field gradient to drag them against the
surrounding elastic matrix.

We add a remark on an interesting peculiarity arising in
this context of rigid inclusions swinging against a surround-
ing elastic environment. It further stresses the importance
and necessity of the variables of relative translations. When
rigid inclusions swing relatively to the center of mass of a
surrounding elastic matrix, they naturally distort the matrix.

Nevertheless, we here find that the macroscopic strain U (1)
i j of

the elastic matrix remains constant [see Eq. (71)]. This can
be understood from the following mesoscopic point of view.
Moving a rigid inclusion under no-slip surface conditions
against a surrounding elastic medium, it contracts the medium
along its axis of motion at the front and extends it at the rear
[45,46]. The magnitudes of deformation are symmetric with
respect to the front and the rear. Therefore, on the macroscopic
level described by U (1)

i j , the mesoscopic strains of opposite
sign at the front and at the rear of the sphere average out. In-
stead, the relative translations naturally incorporate this mode
of relative displacement into the macroscopic characteriza-
tion.

B. Actuation or active stress by one component

To proceed one step beyond the simple picture above, we
now include basic spatial variations. Moreover, we consider
one of the two components to exert an actuating or active
stress onto the system. For example, we may think of a mag-
netic second component that contracts or elongates along the
direction of an externally imposed magnetic field, particularly
in the context of soft magnetic actuators. We may also con-
sider an active component that induces mechanical stresses by
consuming chemicals. Examples are filamentous networks in
biological cells that actively contract in the cell environment,
or muscle cells surrounded by other biological tissue.

The components of the associated actuating or active stress
�

act (2)
i j are added to �

(2)
kk and �̃

(2)
i j in Eqs. (9) and (11), respec-

tively. This implies that they can be added via a contribution
�

act (2)
i j dU (2)

i j to the Gibbs relation in Eq. (1). Similarly, a

contribution �
act (2)
i j U (2)

i j to the total energy density in Eq. (4)
results.

The stress �
act (2)
i j will initiate relative and possibly overall

distortions of the whole system, unless the system is overly
confined. It is important to note that in reality such distortions
will frequently start from spatial heterogeneities of the sys-
tem, particularly from its boundaries [47], and then propagate
into the bulk. This requires one to consider more specific
systems and situations. Instead, our scope here is to illustrate
on a basic minimal example the general interplay especially
between the newly coupled macroscopic variables of strain,
U (1)

i j , U (2)
i j , and relative velocity, wi. Therefore, we rather

concentrate on the bulk and impose a spatially modulated
actuation along one direction, here the x direction, so that

�
act (2)
i j = Pact(t ) sin(kx)δixδ jx, (75)

where Pact(t ) contains the magnitude of active or actuation
stress, while k denotes the wave number of spatial modula-
tion. In experiments, such modulations could, for instance,
be achieved through imposed patterns of light irradiation in
light-activated systems relative to the daylight reference state
[48,49] or through spatially controlled release of nutrients in
biological systems.

Again, we consider the overall mass density to be con-
served, ρ̇ = 0, so that ∇ivi = 0, and we neglect couplings to
variations in entropy density δσ . Assuming that �act (2)

xx only
induces small deviations from the initial state, we radically
linearize the remaining dynamic Eqs. (16)–(20) and (61). In
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addition, we assume that the system still can be treated as
isotropic. Again not taking into account relative rotations,
only including the leading contribution ξ ′mi = ξwi in the
dissipative current X D

i in Eq. (31), that is, neglecting the
contributions ∼ν

(c)
i jkl and ∼ν

(w)
i jkl , the dynamic equations then

read

φ̇ = − α

ρ
(1 + γ )∇iwi − 1

ρ
∇i j (1)D

i , (76)

v̇i = − 1

ρ
∇i p + 1

2ρ
∇ j

(
�

(1)
i j + �

(2)
i j

) − 1

ρ
∇ jσ

D
i j , (77)

ẇi = − 1

ρ
(1 + γ )∇i� − β

(1)
5 ∇ j�

(1)
i j

−β
(2)
5 ∇ j�

(2)
i j − cdβ

(rt)
1 u(rel)

i − X D
i , (78)

U̇ (1)
i j = Ai j − 1

2
αβ

(1)
5 (∇iw j + ∇ jwi ) − Z (1)D

i j , (79)

U̇ (2)
i j = Ai j − 1

2
αβ

(2)
5 (∇iw j + ∇ jwi ) − Z (2)D

i j , (80)

u̇(rel)
i = − αβ

(rt)
1 wi − z(rel)D

i , (81)

where

� = 1

κφ

δφ + 1

ρκu1
U (1)

kk + 1

ρκu2
U (2)

kk , (82)

�
(1)
i j = c(11)

tr U (1)
i j + c(12)

tr U (2)
i j

+ 1

3
δi j

(
c̄(11)U (1)

kk + c̄(12)U (2)
kk + 1

ρκu1
δφ

)
, (83)

�
(2)
i j = c(22)

tr U (2)
i j + c(12)

tr U (1)
i j

+ 1

3
δi j

(
c̄(22)U (2)

kk + c̄(12)U (1)
kk + 1

ρκu2
δφ

)
+ �

act (2)
i j ,

(84)

while c̄(mn) = c(mn)
l − c(mn)

tr for (mn) ∈ {(11), (12), (22)}.
The remaining parts of the dissipative currents read
j (1)D
i = − ρd∇i� − d1∇i�

(1)
kk − d2∇i�

(2)
kk − d (rt)

2 cd u(rel)
i , σ D

i j

= − νi jkl∇lvk , X D
i = αξ ′wi while Z (1)D

i j and Z (2)D
i j are given

by Eqs. (28) and (29), respectively, where we neglect stress
diffusion and again couplings to temperature setting ξ

(mn)
tr =

ξ
(mn)
l = 0 for (mn) ∈ {(11), (12), (22)} and κ1 = κ2 = 0, as

well as z(rel)D
i = cdζ

(rt)u(rel)
i − d (rt)

2 ∇i�.
To be able to consider an analytically traceable situation,

we now confine all spatial variations and thus the distortions
and dynamics to the x direction. Together with the above-
mentioned overall volume conservation, ∇ivi = 0, we obtain
vi = 0 and thus Ai j = 0.

Interesting aspects arise from the explicit consideration of
the relative velocity wi between the two components. Fo-
cusing only on the reversible parts, that is, not considering
dissipative effects, we first rewrite the above equations for

vi = 0 as

φ̇ = − α

ρ
(1 + γ )∂xwx, (85)

ẇx = − 1

ρ
(1 + γ )∂x� − β

(1)
5 ∂x�

(1)
xx

−β
(2)
5 ∂x�

(2)
xx − cdβ

(rt)
1 u(rel)

x , (86)

U̇ (1)
xx = − αβ

(1)
5 ∂xwx, (87)

U̇ (2)
xx = − αβ

(2)
5 ∂xwx, (88)

u̇(rel)
x = − αβ

(rt)
1 wx. (89)

From here, we see that changes in concentration φ, in the
strains U (1)

xx and U (2)
xx of the two components, and in their

mutual relative displacement u(rel)
x are in this case solely due to

reversible transport through the relative velocity wx between
the two components. That is, the actuation or active stress
drives the relative velocity, not directly the strains. The strains
and the other variables are only indirectly driven by the actu-
ation or active stress through the relative velocity wi.

This set of equations can be solved by taking another time
derivative of Eq. (86) to then insert Eqs. (85) and (87)–(89).
For example, for an oscillating actuation or activation stress

�act (2)
xx = Pact sin(kx) cos(ωt ) (90)

of frequency ω, we obtain

δφ = − α

ρ
(1 + γ )

k

ω
Pw sin(kx) cos(ωt ), (91)

wx = Pw cos(kx) sin(ωt ), (92)

U (1)
xx = − αβ

(1)
5

k

ω
Pw sin(kx) cos(ωt ), (93)

U (2)
xx = − αβ

(2)
5

k

ω
Pw sin(kx) cos(ωt ), (94)

u(rel)
x = αβ

(rt)
1

1

ω
Pw cos(kx) cos(ωt ), (95)

while

Pw = − β
(2)
5 kωPact

{
cdα

(
β

(rt)
1

)2 + ω2 − k2

×
[

(1 + γ )2α

ρ2κφ

+ αβ
(1)
5

ρ2κu1
+ αβ

(2)
5

ρ2κu2

+α
(
β

(1)
5

)2
c̃(11) + α

(
β

(2)
5

)2
c̃(22) + 2αβ

(1)
5 β

(2)
5 c̃(12)

+ αβ
(1)
5 (1 + γ )

3ρ2κu1
+ αβ

(2)
5 (1 + γ )

3ρ2κu2

]}−1

, (96)

with c̃(mn) = (2/3)c(mn)
tr + (1/3)c(mn)

l for (mn) ∈ {(11), (12),
(22)}. Taking the limit ω → 0 in Eqs. (90)–(96), we obtain
the limits of static concentration changes δφ, static distor-
tions U (1)

xx and U (2)
xx , as well as static relative displacements

u(rel)
x in response to the actuation or active stresses �act (2)

xx =
Pact sin(kx). Obviously, if stretching the second component
implies contraction of the first component along the x direc-
tion due to overall volume conservation, then β

(1)
5 and β

(2)
5

should be of opposite sign.
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Including in Eq. (86) the dissipative current X D
i = αξ ′wi

[see Eq. (78)] involves an additional damping of the relative
velocity. With this extension, taking again the time derivative
of Eq. (86) before inserting Eqs. (85) and (87)–(89), we obtain
at each position x an equation for wx that resembles the one for
a damped driven harmonic oscillator. Corresponding consid-
erations apply (see also our conclusions above in Sec. IX A).
This cures the issue of the possible resonance frequency that
may arise from Eq. (96). We also note that the incorporation
of dissipative effects leads to phase shifts when compared to
the thermodynamic driving force and to imaginary parts of the
response functions.

The further dissipative currents include contributions that
describe deviations from a perfectly elastic and thus reversibly
deformable system. For instance, j (1)D

i in Eq. (76) contains
diffusional relocations of one of the two components relative
to the other. This is in contrast to the reversible transport
through the relative velocity wi described by Eq. (85). For
example, this concerns particulate inclusions in an elastic
environment that are small enough to diffuse through their
surroundings, e.g., a polymeric network of significantly large
mesh size. The dissipative contributions ∼ζ

(mn)
tr and ∼ζ

(mn)
l ,

(mn) ∈ {(11), (12), (22)}, to Z (1)D
i j and Z (2)D

i j in Eqs. (79) and
(80), respectively, imply that the components are not perfectly
elastic. That is, they do not maintain statically deformed
states, but rather relax the corresponding strains. Examples
could be disentanglement processes in polymeric materials or
filamentous networks. Corresponding relaxational processes
render the systems viscoelastic and have to some extent al-
ready been investigated in Ref. [8]. Analogous conclusions
apply to the relative translations between the two components,
here entering through the corresponding contribution ∼ζ (rt)

via z(rel)D
i in Eq. (81).

X. SUMMARY AND PERSPECTIVE

In this work we have analyzed the macroscopic dynamics
of elastic composite materials consisting of two components.
As we have shown, two strain fields can be used for a nonlin-
ear description. It turns out that two strain fields necessitate
a two-fluid description with two velocity fields to describe
the full dynamics. Alternatively to the two strain fields for
the two subsystems, one can use the total strain field and the
relative strain field. In addition, we have incorporated into our
description the coupling of the two velocity fields to relative
rotations, a feature not considered before. This effect leads
to many reversible dynamic contributions also involving the
two strain fields. For relative translations we concentrated on a
linearized description. Large macroscopic relative translations
would probably lead to a disintegration of the system into two
pieces.

Our approach in the framework of generalized hydro-
dynamics is systematic in the low-frequency and long-
wavelength limit of moderate amplitudes, once the macro-
scopic variables have been defined. One of the strengths of
the approach is that it allows one to work out the various
mutual couplings among all these variables and their currents
both in statics and dynamics. This statement is especially valid

concerning the reversible dynamic parts. An obvious example
is given by the ten reversible contributions to the dynamic
strain equations that we have identified and that are based on
the mean and relative velocities as further detailed in
Appendix A.

Within the macroscopic theory, specific values of the listed
coupling parameters cannot be provided. They depend on the
material at hand and thus would need to be specified from ex-
perimental investigations, from coarse-graining microscopic
models, or from numerical averaging of large-scale micro-
scopic simulations. In this framework, it will be interesting
to understand which microscopic features a substance needs
to show so that the presently predicted macroscopic couplings
emerge and can be validated.

Additional insight on the role and consequences of the
derived contributions could be provided by corresponding
macroscopic continuum simulations. For this purpose, it
might be reasonable to start from a basic set of macroscopic
variables and selected material parameters, excluding many of
the listed contributions as far as possible. Then, successively,
some of these contributions are added by varying the values
of their associated material parameters. Their consequences
are analyzed. In this way, an overview can be developed,
particularly when the situations get more complex than in
our investigated minimal examples, that is, when individual
effects cannot be addressed in an isolated way any longer
but when the coupling between many variables and spatial
degrees of freedom becomes dominant. To facilitate corre-
sponding computational evaluations, we have presented the
effects of relative translations and rotations separately so that
they can be added at a later stage. Moreover, we have included
an overview on simplified sets of reversible contributions to
the dynamic strain equations involving the mean and relative
velocities.

In terms of further theoretical developments, the present
investigation of two-component elastic systems with two ve-
locity fields opens up a number of directions to pursue in the
future. Naturally it will be an intriguing possibility to replace
one of the solid components by magnetic particles or even
by an already functionalized magnetic gel component, thus
turning to the field of magnetorheological elastomers or even
functionalized materials, one component of which already
consists of a magnetic composite material itself. To this end
we can make use of our previous work on two-fluid effects
in magnetorheological fluids. The benefit of studying the ef-
fects of external magnetic fields in such a soft system will
be to control shape and length changes by small to moderate
magnetic fields. This approach can be used to build magnetic
actuators [50–53]. Applying an oscillatory magnetic field to
such a system with magnetic grains would also offer the pos-
sibility to induce oscillations in the nonmagnetic part of the
system. In parallel, it seems worthwhile to study the electric
analog to magnetorheological elastomers, namely, electrorhe-
ological elastomers. Such investigations may form a natural
bridge in the context of improving the quality of current
batteries.

Concerning the fields of chemical reactions and biological
gels, another direction comes to mind. One could use a soft

174304-11



PLEINER, MENZEL, AND BRAND PHYSICAL REVIEW B 103, 174304 (2021)

two-component system, for which one of the components
supports an autocatalytic chemical reaction similar to the
systems pioneered by Yoshida’s group [54–56]. In this case
the reaction couples to the shrinkage and expansion of the
gel component hosting the chemical reaction in an oscillatory
fashion. This time-dependent motion leading to deformations
could then be transferred to the passive component. Clearly
this concept could also be used in bioinspired soft matter
systems sometimes called active media.
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APPENDIX A: REDUCING THE COMPLEXITY OF THE DYNAMIC STRAIN EQUATIONS

The ten different velocities that enter the dynamic strain equations (39) and (40) are related to the mean velocity vi = φv
(1)
i +

[1 − φ]v(2)
i and the relative velocity wi = v

(1)
i − v

(2)
i by

ṽ
(1)
i = vi + αβ

(1)
5 wi, ṽ

(2)
i = vi + αβ

(2)
5 wi, (A1)

v̂
(11)
i = vi + αβ

(1)
6 wi, v̂

(22)
i = vi + αβ

(2)
6 wi, v̂

(12)
i = αβ

(1)
8 wi, v̂

(21)
i = αβ

(2)
8 wi, (A2)

v̆
(11)
i = vi + αβ

(1)
7 wi, v̆

(22)
i = vi + αβ

(2)
7 wi, v̆

(12)
i = αβ

(1)
9 wi, v̆

(21)
i = αβ

(2)
9 wi. (A3)

The simplified Eqs. (41) and (42) are obtained by the special choices β
(1)
5 = β

(1)
6 = β

(1)
7 , β (2)

5 = β
(2)
6 = β

(2)
7 , and β

(1)
8 = β

(2)
8 =

β
(1)
9 = β

(2)
9 leading to the three velocities

v̄
(1)
i = vi + αβ

(1)
6 wi, v̄

(2)
i = vi + αβ

(2)
6 wi, v̄

(3)
i = αβ

(1)
8 wi, (A4)

depending on three phenomenological parameters.
The naive model, Eq. (43), is obtained by the additional choices β

(1)
8 = β

(2)
8 = β

(1)
9 = β

(2)
9 = 0 leading to v̄

(3)
i = 0, and by

αβ
(1)
6 = 1 − φ and αβ

(2)
6 = −φ leading to v̄

(1)
i = v

(1)
i and v̄

(2)
i = v

(2)
i . In this model all phenomenological parameters β

(1,2)
5,6,7,8,9

are fixed.
The simplified model for U̇ (tot)

i j and U̇ (rel)
i j , Eqs. (45) and (46), with four phenomenological parameters, is obtained by the

special choices β (1)
n = β (2)

n for n ∈ {6, 7}, while β
(1,2)
8 and β

(1,2)
9 are set to zero, leading to

v̄
(4)
i = vi + αβ

(1)
6 wi, v̄

(6)
i = vi + 1

2α
(
β

(1)
5 + β

(2)
5

)
wi, (A5)

v̄
(5)
i = vi + αβ

(1)
7 wi, v̄

(7)
i = 1

2α
(
β

(1)
5 − β

(2)
5

)
wi. (A6)

APPENDIX B: SOME DETAILS OF TWO-FLUID HYDRODYNAMICS

In this section we briefly sketch the structure of the previous two-fluid description involving two different densities ρ (1,2) and
momenta g(1,2)

i , where the focus is on genuine fluids in the absence of elasticity (cf. Refs. [14,15]). This implies the existence
of two different velocities by the relations g(1)

i = ρ (1)v
(1)
i and g(2)

i = ρ (2)v
(2)
i . The first law of thermodynamics in its differential

form relates changes of the fluid variables to energy density and entropy density changes,

dε = T dσ + μ(1) dρ (1) + μ(2) dρ (2) + v(1) · dg(1) + v(2) · dg(2), (B1)

defining the appropriate conjugate chemical potentials μ(1,2). The conjugates to the momenta are the velocities according to the
kinetic energy densities εkin

1,2 = (1/2)v(1,2)
i g(1,2)

i . We obtain the one-fluid limit by taking one of the densities as zero, or by setting

ρ (1) = ρ (2) and v
(1)
i = v

(2)
i .

This limit is facilitated (and the resulting dynamic equations are simplified) by switching to a different set of variables. In
particular, we use the total momentum density gi = g(1)

i + g(2)
i ≡ ρvi, thereby defining the mean velocity vi = (1/ρ)(ρ (1)v

(1)
i +

ρ (2)v
(2)
i ), which is also the conjugate to gi, and the total density ρ = ρ (1) + ρ (2), with the chemical potential μ as conjugate.

Of course, one needs two further variables. For the density one can choose any rescaled linear combination of the two densities
(other than the sum) and we use the concentration φ = ρ (1)/ρ. For the velocities a reasonable second variable is the velocity
difference wi = v

(1)
i − v

(2)
i . The one-fluid limit is then found from φ = 0 and wi = 0.

The Gibbs relation for this set of variables is given by Eq. (1), excluding the contributions of strain. Comparing with Eq. (B1)
one finds for mi, the conjugate of wi, and for �, the conjugate of φ,

� = (μ(1) − μ(2) ) + w · v + w2(1 − 2φ) and μ = μ(1)φ + μ(2)(1 − φ) + w2φ(1 − φ), (B2)

or vice versa μ(1) = μ + ρ−1ρ (2) (� − w · v1) and μ(2) = μ − ρ−1ρ (1)(� + w · v(2) ), (B3)
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where v = φv(1) + (1 − φ)v(2) = ρ−1(g(1) + g(2) ) and m = ρ (1 − φ)φw = (ρ (2)g(1) − ρ (1)g(2) )ρ−1.

(B4)

Regarding the dynamical equations one has to take into account that the densities ρ (1),(2) are conserved individually and, in
the simplest model, are transported by its velocity. The most general form is then

ρ̇ (1) + ∇i
(
ρ (1)v

(1)
i + j (1)

i

) = 0 and ρ̇ (2) + ∇i
(
ρ (2)v

(2)
i + j (2)

i

) = 0 (B5)

with j (2)
i = − j (1)

i . Summing up these two equations, the phenomenological mass currents j (1,2)
i add up to zero, leading to ρ̇ =

∇igi, Eq. (15), because the total mass current is equal to the total momentum density g = ρv. For the concentration φ = ρ (1)/ρ

the dynamical equation (16) follows immediately from Eqs. (B5) as well.
However, it should be noted that the actual form, e.g., of the transport terms in a two-fluid description, are not a priori fixed

by any general rule. Rather, they depend on certain reversible phenomenological transport parameters, e.g., γ in j (1)R
i of Eq. (37).

In particular, for γ = 0 (no transportlike contribution in j (1)R
i ) the effective transport velocities are v

(1,2)
i for ρ (1,2), respectively,

and v
(c)
i = (ρ (2)v

(1)
i + ρ (1)v

(2)
i )/ρ for φ in Eq. (16), while for γ = −1 all three variables are convected by the mean velocity.

Similarly, the dynamics of the two momenta, convected with their appropriate velocities, takes the form

ġ (1)
i + ∇ jg

(1)
i v

(1)
j + ρ (1)ρ (2)

ρ
Xi + ρ (1)

ρ
∇ jσi j − ρ (1)

ρ
wi∇ jm j − mj∇ jv

(1)
i + v

(c)
i ∇k j (1)

k = 0, (B6)

ġ(2)
i + ∇ jg

(2)
i v

(2)
j − ρ (1)ρ (2)

ρ
Xi + ρ (2)

ρ
∇ jσi j − ρ (2)

ρ
wi∇ jm j + mj∇ jv

(2)
i − v

(c)
i ∇k j (1)

k = 0, (B7)

with v
(c)
i = (ρ (2)v

(1)
i + ρ (1)v

(2)
i )/ρ. Summing up Eqs. (B6) and (B7), the required dynamic Eq. (17) for gi is obtained, because

the momentum current density due to flow reads ρ (1)v
(1)
i v

(1)
j + ρ (2)v

(2)
i v

(2)
j = g jvi + w jmi. The stress tensor σi j here comprises

the isotropic pressure and the phenomenological contributions. The dynamic equation for the relative velocity, Eq. (18), follows
from Eqs. (B6) and (B7) by subtraction [and using Eqs. (B5)], with Xi the quasicurrent of ẇi [including the ∇i(�/ρ) contribution]
taking into account that β2 = β4 = 1/2 and β3 = 1/ρ1 − 1/ρ2 in X R

i of Eq. (35) is chosen.
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