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Abstract. In this manuscript we report theoretical and numerical re-
sults on convection for a magnetic fluid in a viscoelastic carrier liquid.
The viscoelastic properties is given by the Oldroyd model. We impose
the lower interface to be rigid, whereas the upper one free which is as-
sumed to be non-deformable and flat. Also, at the upper interface the
surface tension is taken to vary linearly with the temperature. Using a
spectral method we calculate numerically the convective thresholds for
both stationary and oscillatory bifurcation. The effect of the viscoelas-
ticity and the Kelvin force on instability thresholds are emphasized.

1 Introduction

Ferrofluids are magnetic stable colloidal suspensions of magnetic nanoparticles dis-
persed in a carrier liquid. In the absence of an external magnetic field the magnetic
moments of the particles are randomly orientated and there is no net macroscopic
magnetization. In an external magnetic field, however, the particles’ magnetic mo-
ments easily orient and a large (induced) magnetization is present. There are two
additional features in ferrofluids not found in ordinary fluids, the Kelvin force and
the body couple [1]. In addition, in an external magnetic field, a ferrofluid exhibits
additional rheological properties such as a field-dependent viscosity, special adhesion
properties, and a non-Newtonian behavior, among others [2]. Convection in ferroflu-
ids has been a topic of great interest In the last decades. In addition, heat transfer
through magnetic fluids has been of outstanding technological importance and was
therefore also a leading area of scientific studies [3].

The first macroscopic description of magnetic fluids was given by Neuringer and
Rosensweig [4]. The convective instability of a magnetic fluid layer heated from be-
low in the presence of a uniform vertical magnetic field was discussed later by Fin-
layson [5]. Both cases, shear free and rigid horizontal boundaries, were investigated
within the linear stability method. Ryskin and Pleiner [6], using a generalized hydro-
dynamic description based on non-equilibrium thermodynamics, derived a complete
set of partial differential equations to describe ferrofluids in an external magnetic
field. Other works in ferrofluid convection can be found in Refs. [8–12]
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A popular way to describe the viscoelastic properties of fluids is the use of a
constitutive equation, which relates the stress and strain rate tensors. Rheology is
the science devoted to generalize the linear, static Newtonian relation to the various,
more complicated cases of non-Newtonian behavior. Very often an Oldroyd constitu-
tive equation [13] is employed to realistically describe viscoelastic properties. In this
model, the stress tensor is basically decomposed into both a polymeric-like elastic
contribution and a Newtonian-like solvent contribution. Convection in such ”Oldroyd
fluids” has been studied by various authors for different physical and geometrical
cases, e.g. both for free-free or rigid-rigid boundary conditions [14, 15]. By heating a
fluid layer from below, as a general result, oscillatory modes can be obtained at onset
in competition to the usual stationary convection states. Which type of instability,
stationary or oscillatory, appears first, depends on the values of the rheological pa-
rameters. Recently, thermal convection in viscoelastic magnetic fluids was studied for
idealized and rigid boundary conditions [16–19].

The Marangoni instability considered in this manuscript is the standard example
for a surface tension driven instability. If a temperature gradient is applied from below
to a fluid layer with an upper free surface, temperature fluctuations result in surface
stress fluctuations due to the temperature dependence of the surface tension. The
latter either decay or have to be compensated by flow, thus rendering the quiescent
heat conducting state unstable to convection above a critical temperature gradient.
The linear analysis of the convection in a magnetic fluid with a deformable free surface
was studied by Weilepp and Brand [20] and by Hennenberg et al. [21]. The linear and
weakly nonlinear analysis in the case of viscoelastic non-magnetic fluids was performed
for a non-deformable free surface by Lebon et al. [22, 23]. The Marangoni problem
of Newtonian ferrofluids has been studied for different situations in Refs. [24–28].
The eigenvalues and eigenfunctions of the adjoint problem and adjoint boundary
conditions for the case of a deformable free surface for the Marangoni problem have
been derived only recently [29].

The purpose of the present work is to analyze the influence of the viscoelasticity
in Bénard-Marangoni convective thresholds in magnetic fluid, in particular, where
the separation ratio and magnetic separation ratio are not too large the simple fluid
approximation can be used [6]. To this aim an Oldroyd viscoelastic magnetic fluids
heated from below is considered. The description of the system involves many param-
eters whose values have not yet been determined accurately. Therefore, we are left
with some freedom in fixing the parameter values. Since the boundary condition are
complicated, we numerically solve the linearized system using a collocation spectral
method in order to determine the eigenfunctions and eigenvalues and consequently
the convective thresholds. The paper is organized as follows: In Section 2, the basic
hydrodynamic equations for viscoelastic magnetic fluid convection are presented. In
Section 3 the linear stability analysis is performed. Finally, conclusions are presented
in Section 4.

2 Basic equations

We consider a layer of an incompressible, viscoelastic, and magnetic fluid of thickness
d, with very large horizontal (xy-plane) extension subject to a vertical gravitational
field g and temperature gradient. The magnetic fluid properties can be modeled as
electrically nonconducting superparamagnets. The external magnetic field H is as-
sumed also to be vertical (parallel to the ẑ axis). It would be homogeneous, if the
magnetic fluid were absent. Let us choose the z-axis such that g = −gẑ and that the
layer has its interfaces at coordinates z = −d/2 and z = d/2. We impose the lower
interface to be rigid and the upper one free. The latter one is commonly assumed to be
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Fig. 1. A vertical cut through the fluid layer. Note the y-axis point into the xz-plane.

non-deformable and flat [22,23,27]. This is a reasonable approximation if the thickness
d is not too small, for example in the case of aqueous suspensions d > 10−3m [30].
At the upper, free interface, the surface tension Σ is taken to vary linearly with the
temperature, T , that means Σ = Σ0 − γT4T , such that γT is commonly a positive
constant and where 4 denotes deviations from the ground state. The set-up of the
problem is drawn in Fig. (1). Under the Boussinesq approximation, the dimensionless
balance equations of the perturbation of the conductive state read as [18,19,29]

∇ · v = 0 (1)

P−1dtv = −∇peff +∇ · τ +RaΞ (2)

(1 + ΓDt)τ = (1 + ΓΛDt)D (3)

dt(θ −M4∂zφ) = (1−M4)w +∇2θ (4)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 (5)

∇2φext = 0 (6)

where {v, τ , θ, φ} are the dimensionless velocity perturbation, the dimensionless extra
stress tensor, the temperature perturbation and the dimensionless magnetic poten-
tial perturbation, respectively. Here dtf = ∂tf + v · ∇f is the total derivative, peff
is the dimensionless effective pressure which contains the static hydrodynamic pres-
sure, and Ξ = Π1(θ, φ)ẑ + M1θ∇(∂zφ) with Π1 = (1 + M1)θ − (M1 −M5)∂zφ and
∇2
⊥ = ∂xx + ∂yy. In Eqs. (1)-(6), the following groups of dimensionless numbers have

also been introduced: (a) (pure fluids) The Rayleigh number, Ra = αT gβd
4/κν, ac-

counting for buoyancy effects; and the Prandtl number, P = ν/κ, relating viscous and
thermal diffusion time scales. (b) (magnetic fluid) The strength of the magnetic force
relative to buoyancy is measured by the parameter M1 = βχ2

TH
2
0/(ρ0gαT (1 + χ));

the nonlinearity of the magnetization, M3 = (1 + χ)/(1 + χ + χHH
2
0 ), a measure of

the deviation of the magnetization curve from the linear behavior M0 = χH0 with
M3 & 1 [5]; the relative strength of the temperature dependence of the magnetic
susceptibility M4 = χ2

TH
2
0T0/cH(1 + χ); and the ratio of magnetic variation of den-

sity with respect to thermal buoyancy M5 = αHχTH
2
0/(αT (1 + χ)). (c)(viscoelastic

fluid) The Deborah number, Γ = λ1κ̄/d
2, and the ratio between retardation and

stress relaxation times, Λ = λ2/λ1.
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In these dimensionless numbers different physical quantities appear such as ρ0
the reference mass density, cH the specific heat capacity at constant volume and
magnetic field, T0 the reference temperature, H0 the reference magnetic field, χT
the pyromagnetic coefficient, κ the thermal diffusivity, χH the longitudinal magnetic
susceptibility, αT the thermal expansion coefficients and αH the magnetic expansion
coefficients, ν the static viscosity, λ1 is the relaxation time, and λ2 is the retardation
time. The last two parameters characterize the viscoelastic time scales which for
thermodynamic stability reasons both, λ1 and λ2, are taken to be positive. Also,
β = (T0−T∞)/(d+(ε/h)) where T∞ is the uniform temperature in the air layer above
the liquid, ε = κcH is the heat conductivity of the liquid, and h is the heat transfer
coefficient. The symbol Dt in Eq. (3) denotes an invariant (”frame-indifferent”) time
derivative, defined as

Dtτ = dtτ + τ ·W −W · τ + a(τ ·D + D · τ ), (7)

where D and W are the symetric and skew-symmetric part of the velocity field
gradient, respectively. Also, a is a phenomenological parameter that lies in the range
−1 to +1. For a = −1, one gets the lower convected Jeffrey’s model (Oldroyd B),
for a = 0 one gets the so-called corotational Jeffrey’s model, and a = 1 describes the
upper convected Jeffrey’s model (Oldroyd A). Let us comment that the coefficient a
is not completely independent of the other rheological parameters [31]. Some limiting
cases are λ2 = 0 that leads to a Maxwellian fluid, while a Newtonian fluid requires
both λ1 = 0 and λ2 = 0.

Let us comment on the numerical values of the parameters; the Rayleigh number
Ra can be changed by several orders of magnitude by varying the applied temperature
gradient, with Ra ∼ 102 − 103 relevant in the present case. A typical value for P in
viscoelastic fluids is P ∼ 100 − 103 with P ∼ 10 for aqueous systems. The magnetic
numbers are field dependent with M1 ∼ 10−4 − 10, M3 & 1, M4 ∼ M5 ∼ 10−6 for
typical magnetic field strengths [6] M1 is directly proportional to H2

0 , while M3 is
only a weak function of the external magnetic field. Since M4 and M5 are very small
and not related to viscoelastic effects, which we are interested in here, we expect not
to loose any reasonable aspect of the problem under consideration by putting them
to zero. Kolodner [32] and the group of Chu [33–35] have suggested that for aqueous
suspensions the Deborah number is about Γ ∼ 10−3 − 10−1, but for other kinds of
viscoelastic fluids the Deborah number can be of the order of Γ ∼ 103. Unfortunately,
no experimental data are available for either the retardation or the stress relaxation
times, so we treat Λ as arbitrary in the range [0, 1]. In the next section, we study the
stability of the conduction state.

3 Linear stability analysis

In order to calculate the linear stability, we only need the linear parts of Eqs. (1)-(5).
This is readily done by neglecting the advective terms v · ∇ and replacing Dt by ∂t.
Moreover, the effective pressure and two components of the velocity field could also
easily be eliminated by applying the curl (∇× ...) and double curl (∇×∇× ...) of the
Navier-Stokes equation and then considering only the z-component of the resulting
equations, w (i.e. the vertical velocity component). After some algebra, the linear
equations read

P−1∂t∇2w = ∇2(∇ · τ )z +Ra∇2
⊥LΞ (8)

(1 + Γ∂t)(∇ · τ )z = (1 + ΓΛ∂t)∇2w (9)
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Fig. 2. ηc (left) and Ωc (right) as a function of α for different values of Γ (black down-
triangles Γ = 0.0, red squares Γ = 0.1, green dots Γ = 0.3, purple up-triangles Γ = 0.5,
brown stars Γ = 0.7). The fixed parameters are P = 10, Λ = 0.5, M1 = 10, M3 = 1.1,
Bi = 10−6, and χb = 1. The inset on ηc shows a magnification in the stationary−oscillatory
transition.

∂tθ = w +∇2θ (10)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 (11)

where LΞ = (1+M1)θ−M1∂zφ. We remark that Eqs. (8) and (9) can be combined in

order to get a single equation for w. One can define the vector field u = (θ, φ, w)
T

that
contains the important variables for the linear analysis. Using standard techniques, the
spatial and temporal dependencies of u are separated using normal mode expansion

u(r, t) = U(z) exp[ik · r⊥ + st], (12)

being U = (Θ,Φ,W )
T

, where k is the horizontal wavenumber vector of the perturba-
tions, r⊥ is the horizontal vector position and where s = σ+ iΩ denotes the complex
eigenvalues; σ is the growth factor of the perturbation, and Ω its frequency. Using the
ansatz (12), Eqs. (8)-(11) are reduced to the following coupled ordinary differential
equations

D2Θ = ξ1Θ −W (13)

D2Φ = ξ2Φ+DΘ (14)

D4W = ξ3D
2W − ξ4W + ξ5Θ − ξ6DΦ (15)

where Dnf = ∂nz f , ξ1 = k2 + σ, ξ2 = M3k
2, ξ3 = 2k2 + sQ/P , ξ4 = k2

(
k2 + sQ/P

)
,

ξ5 = Rak2 (1 +M1)Q and ξ6 = Rak2M1Q such that Q = (1 + sΓ )/(1 + sΛΓ ).
The boundary conditions for a viscous or viscoelastic fluid are at the lower rigid

interface (z = −1/2)
W = DW = Θ = 0, (16)

and at the upper free interface (z = +1/2)

W = D2W + k2MaQΘ = DΘ +BiΘ = 0, (17)

where Ma = γTβd
2/κν is the Marangoni number. We remark that the Marangoni

instability is a capillarity effect and it arises from the variation of the surface tension Σ
at the upper surface with temperature. In addition, the Biot number, Bi = dh/ε arises
from the Newton’s heat transfer law due to cooling at the upper boundary. Note that
Bi for a perfectly heat conducting surface tends to infinity, and for an adiabatically
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Fig. 3. ηc (left) and Ωc (right) as a function of M1 at α = 1 for different values of Γ
(black down-triangles Γ = 0.0, red squares Γ = 0.1, green dots Γ = 0.3, purple up-triangles
Γ = 0.5, brown stars Γ = 0.7). The other fixed parameters are P = 10, Λ = 0.5, M3 = 1.1,
Bi = 10−6, and χb = 1. The inset on ηc shows a magnification in a specific range of M1.

insulated boundary tends to zero. The assumption of a flat upper surface is reasonable
for small crispation number Cr = νκ/(Σ0d) < 10−3 [30].

On the other hand, in the case of a finite magnetic permeability χb of the bound-
aries, the scalar magnetic potential must satisfy the following dimensionless boundary
conditions [6, 7]

(1 + χb)(DΦ−Θ)± k Φ = 0, (18)

at z = ±1/2. The occurrence of temperature variations in the magnetic boundary
condition at the free boundary (at z = −1/2 there is Θ = 0) is specific for the
combination of surface and magnetic effects. The effective surface susceptibility χb =
χ−(1+χ)(M3−1) is slightly smaller than the linear one. Note that in the limit when χb
tends to infinity, Eqs. (18) gives DΦ = Θ, which is often used as a simplified boundary
condition. Finally, let us remark that if we take into account a deformable free surface
additional important cross effects, such as the Cowley-Rosensweig instability [21, 25,
26], may be appear. This issue will be included in future works.

Since Ra and Ma are not completely unrelated, one can define two other param-
eters, η and α which measure better the ratio between the gravity and the capillarity
effects [23, 36]. These parameters are called rate of heating and gravity parameter,
respectively. The relationships with the dimensionless numbers are Ra = ηαRa0 and
Ma = (1 − α)ηMa0, such that Ra0 = 669 and Ma0 = 79.607. The inverse relation-
ships are

η =
Ra

Ra0
+

Ma

Ma0
(19)

and

α =
RaMa0

MaRa0 +RaMa0
. (20)

The values Ra0 and Ma0 correspond to the critical Rayleigh number obtained in
the absence of capillarity for Newtonian fluids and to the critical Marangoni number
obtained in the absence of gravity for Newtonian fluids with an adiabatically isolated
upper surface, respectively. Note that the case of α = 0 corresponds to pure Marangoni
instability (Ra = 0), while the case α = 1 correspond to pure Rayleigh-Bénard
instability (Ma = 0). In the following, we will calculate, for some fixed values of α,
the critical value ηc of η, where the instability sets in.

In order to solve Eqs. (13)-(15) with these realistic boundary conditions, we use
a spectral collocation method. Spectral methods ensure an exponential convergence
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to the solution and are the best available numerical techniques for solving simple
eigenvalue – eigenfunction problems. Here, we follow the technique of collocation
points on a Chebyschev grid as described by Threfethen [37]. The collocation points
(Gauss−Lobatto) are located at height zj = cos(jπ/N) where the index j runs from
j = 0 to j = N . Note that here the z-variable ranges from −1 to +1 and one
has therefore to rescale Eqs. (13)-(15) accordingly, because the physical domain is
defined in the range (−1/2,+1/2). We use N = 120 collocation points in the vertical
direction, for which the equations and the boundary conditions are expressed. By
using the collocation method, the set of differential equations (13)-(15) is transformed
into a set of linear algebraic equations. The eigenfunctions (Θ(z), Φ(z),W (z)) are
transformed into eigenvectors defined at the collocation points, X = (Θ0, ....,WN ),
such that Ψj = Ψ(zj). After this stage of discretization, one is left with a classical
generalized eigenvalue problem, ĀX = ηB̄X, where η and X are the eigenvalue and
eigenvector, respectively.

In the case of the oscillatory instability considered here, one has to make sure that
η (as being a physical quantity) is a real number by choosing a correct value for Ω.
Therefore, one is left with a triplet {η, k,Ω} that defines a marginal stability condition
(for a fixed value of the horizontal wavenumber k). This procedure is repeated for
several values of k leading to the marginal stability curve η versus k. The minimum
of this curve gives ηc and kc, and the corresponding value for the critical frequency
Ωc.

Instead of using the linearized Oldroyd model, Eq. (9), one could have used a
linear viscoelastic description in terms of a relaxing strain tensor, Uij ,

∂tUij = Dij − Γ−11 Uij (21)

where the extra stress tensor τ ij = p(E1Uij +Dij) contains an elastic part (with the
dimensionless elastic modulus E1) and the usual Newtonian viscosity (which is the
p number in dimensionless units). Within the linear domain both descriptions are
equivalent with Γ = Γ1 and Λ = (1 +E1Γ1)−1, revealing however that Λ is restricted
by 0 < Λ < 1. The static Newtonian viscosity νN , used in the viscoelastic description,
is related to the asymptotic viscosity ν (used in the Oldroyd case) by ν = νN/Λ.

The main advantage of the use of the explicit viscoelasticity, Eq.(21), is that it
can easily be generalized in a straightforward physical manner into the nonlinear
domain. In addition, for complex liquids that need the introduction of additional
degrees of freedom the combination of the strain tensor dynamic equation with those
additional degrees of freedom follows standard thermodynamic and hydrodynamic
procedures, while the heuristic generalization of the constitutive equation reaches its
limits, rapidly. Furthermore, realistic boundary conditions are straightforward for the
strain field, but not at all if the stress is used as variable. A critical comparison
between the two approaches at the quadratic nonlinear level is given in Ref. [31].

The main results are given in Figs. 2 to 4. In all cases the critical heating rate,
ηc, and its corresponding frequency, Ωc, are displayed as a function of different sets
of control and material parameters. In particular, we concentrate the discussion on
the influence of the magnetic and viscoelastic properties on those quantities.

Figure 2 shows ηc and Ωc as a function of the gravity parameter α for five dif-
ferent Deborah numbers. For Γ 6= 0, we can observe that the system suffers a Hopf
bifurcation, which only slightly depends on the Deborah number. For small values
of α the dominant regime is the stationary instability, and after the bifurcation the
threshold increase its value. In the oscillatory instability regime, the critical heating
rate decreases as the gravity parameter increases, while the variation of the Deborah
numbers is rather irrelevant. The critical frequency on the other hand increases with
α according to a power law and is strongly decreasing with Γ well in the instability
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Fig. 4. ηc (left) and Ωc (right) as a function of Λ for different values of α (red squares α = 0,
green dots α = 0.3, purple triangles α = 0.5, brown stars α = 1) . The fixed parameters are
P = 10, Γ = 100, M1 = 10, M3 = 1.1, Bi = 10−6, and χb = 1. The inset on Ωc shows its
critical wave number kc as function α.

regime. Let us remark that the case Γ = 0, which is the Newtonian case, only the
stationary bifurcation appears.

Figure 3 shows ηc and Ωc as a function of the magnetic number M1 ∼ H2
0 for the

same five values of Γ in the pure Bénard case (α = 1). We find that the magnetic field
destabilizes the system, since the critical value of the threshold, ηc, decreases when
M1 increases. The threshold is independent of the Deborah number Γ . On the other
hand, the critical frequency Ωc is almost independent of the magnetic field. However,
it depends strongly on the Deborah number, and decreases for increasing Γ . This
simply reflects the expectation that a slower relaxation of the elasticity enhances the
internal time scale for the critical perturbations. Notice that the critical heating rate
in Newtonian case is lower than the in viscoelastic cases for an intermediate range of
M1, and tends to the same value for both small and large M1 (see the inset of Fig.
3). Finally, we remark that, for this range of parameters, the influence of the other
magnetic number, M3 is irrelevant, because ηc and Ωc change less than 0.05%.

Figure 4 shows ηc and Ωc as a function of the retardation modulus Λ for different
values of the gravity parameter α. Obviously, for small Λ there is an oscillatory
instability with a (hard mode) transition to the stationary one, with a finite critical
frequency at the transition. Such a transition has to be expected, since for a Newtonian
fluid (Λ → 1) only the stationary instability is possible, while in the elastic case
(Λ� 1) convection cannot be stationary, but only oscillatory. This transition occurs
at a smaller elastic modulus in the Marangoni case than in the Bénard one. In addition,
we observe that in the oscillatory regime the frequency is a non-smooth function of
Λ, a known phenomenon in viscoelastic fluids with complex boundary conditions
[23,38,39]. It is directly related to jumps in the critical wavenumber kc (The inset of
Fig. 4). At the transition the horizontal width of the spatial patterns (e.g. convection
rolls) decreases and reaches again the stationary value in a few steps when decreasing
Λ. Finally, let us comment that this phase transition is robust against changes of the
Deborah number within a wide range. The critical heating rate is independent of the
elastic properties for the stationary instability, but decreases in the oscillatory one
rather rapidly with increasing elasticity.
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4 Final remarks

In the present work, Bénard-Marangoni convection in a magnetic viscoelastic liquid
was studied. The stability thresholds have numerically been determined by the spec-
tral method. The technique of collocation points (Gauss−Lobatto) as described by
Threfethen was used [37]. Due to the presence of various destabilizing effects, i.e.
buoyancy and magnetic forces, and of additional relaxation channels due to the Ol-
droyd model, the discussion of the stability curves becomes rather intricate. We found
that the magnetic effects destabilizing the system and in the pure Marangoni case
its dependence on the critical thresholds is irrespective of low values of the Deborah
number. The oscillatory instability, whose critical frequency is a non-smooth function
of the relaxation-retardation times ratio, is competing with the stationary one. Let
us finally comment that, very often, ferrofluids show a finite separation ratio and a
finite magnetic separation ratio and therefore require a binary mixture description.
However, for materials where the separation ratio and magnetic separation ratio are
not too large the simple fluid approximation is valid [6]. The present work is based on
this last approximation. A detailed study on the oscillatory bifurcation for magnetic
binary mixtures is still in progress.
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31. Pleiner, H., Liu, M. and Brand, H.R., Rheologica Acta. 43 (2004) 502-509.
32. Kolodner, P., J. Non-Newtonian Fluid Mech. 75 (1998) 167-192.
33. Perkins, T.T., Smith, D.E. and Chu, S., Science 276, (1997) 2016-2021.
34. Quake, S.R., Babcock H. and Chu, S., Nature 388 (1997) 151-154.
35. Babcock, H., Smith, D.E., Hur, J.S., Shaqfeh, E.S.G. and Chu, S., Phys. Rev. Lett. 85

(2000) 2018-2021.
36. Nield, D.A., J. Fluid Mech. 19 (1964) 341-352.
37. Trefethen, L.N., Spectral Methods in Matlab, (SIAM, Philadelphia, 2000).
38. Laroze, D., Martinez-Mardones, J. and Bragard, J., Eur. Phys. J. Special Topics 146

(2007) 291-300.
39. Dauby, P.C., Pannentier, P., Lebon, G., and Gnnel, M., J. Phys.: Condens. Matter 5

(1993) 4343-4352.


	Introduction
	Basic equations
	Linear stability analysis
	Final remarks
	Acknowledgements

