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Thermal convection of binary mixtures in a porous medium is studied with stress-free boundary conditions.
The linear stability analysis is studied by using the normal mode method. The effects of the material pa-
rameters have been studied at the onset of convection. Using a multiple scale analysis near the onset of the
stationary convection a cubic-quintic amplitude equation is derived. The influence of the Lewis number and
the separation ratio on the supercritical-subcritical transition is discussed. Stationary front solutions and lo-
calized states are analyzed at the Maxwell point. Near the threshold of the oscillatory convection, a set of two
coupled complex cubic-quintic Ginzburg-Landau type amplitude equations is derived, and implicit analytical
expressions for the coefficients are given. Published by AIP Publishing. https://doi.org/10.1063/1.5027468

Thermal convection of binary liquids in a porous
medium is considered, since it exhibits both, sta-
tionary and oscillatory instabilities that allow for
transitions from a supercritical, forward bifurca-
tion to a subcritical, backward one. The latter
regime features the coexistence and competition
between different states and is described by gen-
eralized Ginzburg-Landau type equations. We
derive those equations for rather general cases
and discuss analytically, for the stationary insta-
bility, front propagation, and localized states.

I. INTRODUCTION

Recent developments in both, theoretical and experi-
mental fluid dynamics, have stimulated widespread inter-
est in nonlinear physics problems. The understanding of
convection has fundamental importance in everyday life,
geophysics as well as astrophysics.1 For instance, convec-
tion in binary liquid mixtures in porous media is per-
tinent for transport processes in geothermal reservoirs2

and industrial developments.3,4

Instabilities in porous media have extensively been
studied theoretically in the literature.5–15 The linear sta-
bility analysis was performed by Brand and Steinberg
for binary fluids.6 The standard, cubic amplitude equa-
tions for stationary and oscillatory instability were de-
rived for different situations.7–10 In the stationary case,
a real cubic-quintic amplitude equation was analyzed.11

Numerical works have also been presented.12–15 In par-
ticular, a Galerkin method for a 3-dimensional situation
was recently employed.15

a)Corresponding author: dlarozen@uta.cl

In this article, we report theoretical and numerical re-
sults concerning thermal convection of binary liquids in a
porous medium. The latter is characterized by a porosity
number, while the binary fluid is described by the Lewis
number (due to mass diffusion) and the separation ra-
tio, which we take as negative (positive Soret coefficient).
The system is driven by heating from below described
by a positive Rayleigh number and we assume idealized
boundary conditions (Sec. II). For finite porosity, linear
stability allows for a stationary and an oscillatory insta-
bility, and we show the ratio of the appropriate thresholds
(critical Rayleigh numbers) as a function of the material
parameters (Sec. III).

The aim of this work is to characterize the subcriti-
cal regime of binary fluids in porous media for idealized
boundary conditions. Using the standard weakly nonlin-
ear description based on multiple scale analysis, we derive
partial differential equations for the slowly varying am-
plitudes, i.e., the envelopes of the convective flow (roll
patterns). Interested in the subcritical regime, a (real)
cubic-quintic Ginzburg-Landau type equation is obtained
in the stationary case (Sec. IV A), while for the oscil-
latory one a coupled set of two complex cubic-quintic
Ginzburg-Landau type equations is found (Sec. IV C).
Within the subcritical regime of the stationary instabil-
ity, localized states are found analytically, which are sta-
ble at the Maxwell point, but decay away from it (Sec.
IV B). For the oscillatory convection, we give analytical
expressions for the complex coefficients of the amplitude
equations (Appendix).

II. THERMAL CONVECTION MODEL

In a porous medium we consider a planar layer of an
incompressible binary mixture of thickness d, with very
large horizontal extensions in the x and y direction and
subject to a vertical gravitational field g as well as a ver-
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tical temperature gradient. We choose the z-axis such
that g =−gE êz and the boundaries of the layer to be at
z = 0 and z = d. A static temperature difference across the
layer is imposed, T (z = 0) = T0 + ∆T and T (z = d) = T0.
In the Boussinesq approximation we consider the fluid
as incompressible except when dealing with the buoy-
ancy force due to the temperature gradient. Within this
approximation the equations that describe perturbations
of the heat conducting state are given6 in dimensionless
form as

(1 + χ∂t)∇
2w−∇

2
⊥θ −ψ∇

2
⊥C = 0, (1)

(∂t +v ·∇−∇
2)θ −Ra w = 0, (2)

(∂t +v ·∇−L∇
2)C + L∇

2
θ −Ra w = 0, (3)

where v = (u,v,w)T is the velocity field, θ the tempera-
ture field, C the concentration field of the denser com-
ponent, and ∇2

⊥ f = ∂ 2
x f + ∂ 2

y f . In Eqs. (1)-(3), several
groups of dimensionless numbers have been introduced:
(a) (fluids) the Rayleigh number, Ra = αT gEKd3/κν , ac-
counting for buoyancy effects, and the porosity number,
χ = (Kκ)/(µνd2) characterizing the medium, and (b)
(binary mixture) the separation ratio, ψ =−αCST/(αT T0)
and the Lewis Number, L = D/κ, relating diffusion with
thermal diffusivity. Here κ is the thermal diffusivity, ν is
the viscosity, αT is the thermal expansion coefficients, αC
is the mass expansion coefficient, ST is the thermodiffu-
sion ratio, D is the diffusion constant, K is permeability,
and µ is the porosity of a porous medium. We remark
that, due to the Soret effect, binary fluids subject to a
temperature gradient experience a stratification of the
solute concentration, hence the separation ratio is an im-
portant control parameters.

The aforementioned equations can be written in a com-
pact operator form

L u +N (u,u) = 0 (4)

with u = (v,θ ,C)T , and the corresponding linear, L , and
nonlinear operator, N . On both boundaries, z = (0,1)
idealized, stress free boundary conditions are imposed.1

At the boundaries there are no temperature or concen-
tration fluctuations w = θ = C = 0. Periodic boundary
conditions are used in the horizontal directions. Thus,
the z-dependence of the fields u is entirely given by ap-
propriate trigonometric functions.

This system has different types of instabilities,6–9,11

e.g., stationary and oscillatory, with the possibility of a
co-dimension two bifurcation. Which type of bifurcation
occurs, depends on the control parameters, in particular
on the separation ratio ψ and the Lewis number L. We
first briefly review the linear stability analysis.

III. LINEAR STABILITY ANALYSIS

We study the linear stability using a normal mode ex-
pansion. For the linear case the set of equations (1) - (3)

FIG. 1. Ratio of the critical Rayleigh numbers Rsc/Roc as a
function of the Lewis number L (top) and of the separation
ratio ψ (bottom) for χ = 1.

can be reduced to Lww = 0 where the linear operator L
can be written as

Lw =

(
∂

∂ t
−∇

2
)(

∂

∂ t
−L∇

2
)(

1 + χ
∂

∂ t

)
∇

2 (5)

+ Ra
[

ψL∇
2−ψ

(
∂

∂ t
−∇

2
)
−
(

∂

∂ t
−L∇

2
)]

∇
2
z

According to the boundary conditions one tries solutions
of the form w = exp(iqx+ pt)sin(πz), where q is the trans-
verse wavevector and p = σ + iω is the complex eigen-
value with σ the growth rate of perturbation and ω its
frequency. This ansatz produces a solvability condition
for Ra.
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A. Stationary convection

For for onset of the stationary convection, p = 0, and
the Rayleigh number is given by Ref. 6

Ras =
δ 4

q2
(
1 + ψ + ψ

L

) , (6)

where δ 2 = π2 + q2. The minimum of the marginal
curve Ras(q), given by ∂qRas = 0, determines the critical
wavenumber qsc and, subsequently, the critical Rayleigh
number, Rasc = Ras(qsc), of the most unstable perturba-
tion. In this case one gets Rasc = (4π2)/(1 + ψ + ψ/L)
and qsc = π.

B. Oscillatory convection

The oscillatory convection occurs when p = iω. In this
case, the Rayleigh number and frequency are given by

Rao =
δ 4 (1 + L)

[
δ 4χ2L + δ 2χ (1 + L)+ 1

]
q2 (1 + ψ + χδ 2)

(7)

and

ω
2 =−

δ 4
[(

1 + χδ 2
)[

L2(1 + ψ)+ ψL
]
+ ψ

]
1 + χδ 2 + ψ

. (8)

To calculate the oscillatory thresholds, again one first
determines the critical wave number qoc (via ∂qRao = 0)
leading to the critical Rayleigh number Raoc = Rao(qoc)
and critical frequency ωoc = ω(qoc). Generally, this has
to be done numerically, but in the case χ� 1, relevant for
many experimental systems, analytical results are possi-
ble. In particular, the critical values are

qoc = π (9)

Roc = 4π
2(1 + L)/(1 + ψ) (10)

ω
2
oc =−4π

4(L2 + ψ[L2 + L + 1])/(1 + ψ) (11)

in that approximation. These results are in agreement
with Ref. 7–9. Finally, we remark that the system ad-
mits a co-dimension two bifurcation. In fact, in the limit
χ � 1, the Takens-Bogdanov bifurcation point (ω2

c = 0)
occurs at ψ =−L2/(1 + L + L2). It should be mentioned,
however, that for χ = 0 the oscillatory instability is al-
ways unstable with respect to the stationary one. Only
by heating from above a linear oscillatory instability is
possible in this limit.6

Figure 1 shows the ratio between the critical Rayleigh
numbers of the stationary and oscillatory convection,
Rasc/Raoc, as a function of the Lewis number L (top)
and the separation ratio ψ (bottom). These are numer-
ical results for the case χ = 1. Obviously, the oscillatory
instability is favoured (Rasc/Raoc > 1) for smaller L (at
fixed negative ψ) and for smaller (more negative) ψ (at
fixed L), and in particular, if both are small.

IV. WEAKLY NONLINEAR ANALYSIS

A nonlinear analysis is needed to determine the type of
convective motion, which is expected to develop beyond
the linear instability threshold. The study of the evolu-
tion of the convective pattern can be done by means of a
multiple scale analysis.16–18 Close to the thresholds it is
assumed that the amplitude of the basic solution changes
only slowly in time and space on the scales T = ε2t and
X = εx, respectively. The small expansion parameter is
ε2 = (Ra−Rac)/Rac, where Rac is the critical value for
the stationary or the oscillatory instability. These two
cases will be analyzed below.

FIG. 2. Top: The cubic coefficient g as a function of L for
different values of ψ. Bottom: Existence range for subcritical
behavior (g < 0 and τ0 > 0) in the L - ψ plane for χ = 1.
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A. Onset of stationary convection

To solve Eq. (4) iteratively, one expands the functions,

u → ε
(
u0 + ε1/2u1 + εu2 + . . .

)
and the operators L →

L0 + ε1/2L1 + εL2 + ε3/2L3 + . . . and N → ε3/2N 0 +
ε2N 1 +ε5/2N 2 + . . ., using ∂x→ ∂x +ε∂X and ∂t → ε2∂T .
In O(ε) the linear problem is obtained. The nonlineari-
ties in Eq. (4) generate corrections in higher orders. The
solvability criterion for the last correction yields an equa-
tions for A(X ,T ) of the imposed disturbances19. This is
a Ginzburg-Landau (GL) type equation.

In particular, one obtains a hierarchy of equations:
L 0u0 = 0, L0u1 = N0−L1u0, L0u2 = N1−L1u1−L2u0,
L0u3 = N2 −L1u2 −L2u1 −L3u0 and L0u4 = N3 −
L1u3−L2u2−L3u1−L4u0. These equations are inho-
mogeneous differential equations and at each order one
has to fulfill the solvability condition 〈u†

0 | r.h.s.〉 = 0,

where u†
0 is the solution of the linear adjoint problem(

L +u† = 0
)
. Here, r.h.s means the corresponding right

hand side in the appropriate order and < |> denotes the
inner product, which is defined as a suitable volume in-
tegration. The solvability condition at O

(
ε7/2

)
leads to

an equation for the amplitude A that is written as

τo
∂A
∂T

= ε
2A−g|A|2A + f |A|4A + ξ

2
o

∂ 2A
∂X2 . (12)

Equation (12) is the cubic-quintic GL equation with real
coefficients describing the variation on the slow time and
large spatial scales of the convective pattern. The coeffi-
cients τ0 and ξ 2

0 are the growth rate amplitude and the
curvature of the marginal stability curve, respectively.
They can be calculated straightforwardly from the linear
stability analysis.19 The material properties g and f are
known as the nonlinear coefficients.

When g > 0 we get a forward, supercritical bifurca-
tion, while for g < 0 the bifurcation is backward and sub-
critical. The transition point between the sub- and the
supercritical bifurcation at g = 0 is a tricritical bifurca-
tion point. For the supercritical case, the calculation of
the quintic term is not needed, while to analyze the sub-
critical one the knowledge of the quintic coefficient, f ,
is necessary. These coefficients are obtained using the
standard procedure19,20 sketched above up to O

(
ε7/2

)
.

For idealized boundary conditions, after straightforward
calculations, the explicit expressions of these coefficients
up to the cubic term can be written as

τo =
1

2π2

[
χ +

L2 + ψ(L2 + L + 1)

L(L + ψL + ψ)

]
, (13)

ξ
2
o =

3
π2 , (14)

g =
1

2π2

[
L3 + ψ(L3 + L2 + L + 1)

L2(L + ψL + ψ)

]
. (15)

If χ � 1 these coefficients are in agreement with the co-
efficients obtained in Ref. 11, except for a scale factor in
g. The analysis of secondary instabilities of the cubic GL
equations can be found in Refs. 18,21.

FIG. 3. Top: The quintic coefficient f as a function of L for
different values of ψ. Bottom: Existence range for the cubic-
quintic amplitude equation (g < 0, f < 0 and τ0 > 0) in the L
– ψ plane for χ = 1.

The upper part of Fig. 2 shows the coefficient g as a
function of the Lewis number L for different values of the
separation ratio ψ. It can change sign and is negative for
lower values of L and higher (less negative) values of ψ.
This also becomes apparent in the lower part of Fig. 2,
where the red area shows the range of negative g values in
the L – ψ plane. This is the region where the quintic term
of the amplitude equation has to be taken into account.
The tricritical bifurcation line, where g = 0, is given by
ψ = −L3/(L3 + L2 + L + 1). For ψ = −L/(L + 1) both, g
and τ0 diverge.

To explore the subcritical bifurcation we calculate the
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quintic coefficient, which is given by

f =
1

8π4
(
1 + ψ + ψ

L
)2

{
1
18

(
1 + ψ +

ψ

L
+

ψ

L2 +
ψ

L3

)2

+
(

ψ +
ψ

L
+ 1
)(

1 + ψ +
[

ψ

L
+

ψ

L2

][
1 +

1
L

+
1

L2 +
1

L3

])}
+

(1 + ψ)

480π4
(
1 + ψ + ψ

L
)2

(
1 + ψ +

ψ

L2 +
ψ

L3

)
+

ψ

1920π4
(
1 + ψ + ψ

L
)2

(
2 +

1
L

)(
1
L

+
ψ

L
+

ψ

L2 +
ψ

L3 +
ψ

L4

)
+

1
80π4

(
1 + ψ + ψ

L
) (1 + ψ +

ψ

L2 +
2ψ

L

)
. (16)

We remark that this result is somewhat different from
that obtained in Ref. 11. However, for most of the values
of L the different expressions show similar behavior, and
for large values of L they converge.

The upper part of Fig. 3 shows the coefficient f as
a function of the Lewis number L for different values of
separation ratio ψ. One observes that f increases mono-
tonically for increasing L reaching a constant value (for
any negative ψ). The quintic coefficient f can only be
negative below a certain value of L that increases with de-
creasing (more negative) ψ values. The condition f < 0
is necessary for the quintic amplitude equation to be rea-
sonable. The lower part of Fig. 3 shows the L – ψ range,
where this is the case. Compared to Fig. 2 the existence
range is (slightly) smaller due to the additional condition
f < 0, in particular for L & 11.

Finally, we remark that homogeneous solutions of this
type of equations have been studied in Ref. 11, and the
Eckhaus instability of this system in Ref. 21. In the next
section we study further stationary solutions in the sub-
critical regime.

FIG. 4. Stationary front solution and localized states of Eq.
(17) at µ = µM for different values of β : β = 1.0 (top-left),
β = 0.9999 (top-right), β = 0.999 (bottom-left), and β = 0.9
(bottom-right). In all cases ζ0 = 0.

B. Stationary front solutions and localized states

Since we are interested in the subcritical regime, we
rewrite Eq. (12) in the generic form. Using the scaling

C = |g|1/2A, τ = T/τo and ζ = X/ξo, the amplitude Eq.
(12) is reduced to

∂C
∂τ

= µC +C|C|2−βC|C|4 +
∂ 2C
∂ζ 2 , (17)

where µ =
√

ε and β = | f |/
√
|g| such that β > 0. Equa-

tion (17) has five stationary homogeneous solutions with

the moduli |C|= 0 and |C|2± =
(

1±
√

1 + 4µβ

)
/2β . The

former describes the conductive state and the latter are
the envelopes of convective states. The trivial solution
|C|= 0 is stable (unstable) for all negative (positive) val-
ues of µ. The solution |C|2− only exists for −1/4β < µ < 0,
but is unstable. It merges with the trivial solution at
µ = 0, which is known as the (trans)critical bifurcation
point. The solution |C|2+ is always non-zero, exists for

µ >−1/4β , and is stable. It merges with |C|2− at the turn-
ing point µ = −1/4β . Thus, in the subcritical regime,
−1/4β < µ < 0, there are two stable homogeneous solu-
tions separated by an unstable one, a typical behavior of
a hysteretic system. Equation (17) also allows for bifur-
cations into different spatial patterns.

For β = 1, the coexistence of the solutions, |C|= 0 and
|C|2+ = (1 +

√
1 + 4µ)/2, allows for a front solution be-

tween these two homogeneous states. At the Maxwell
point, i.e. for µ = µM = −3/16, the front between the
two states is motionless22. Here, the potential whose
variation gives rise to the right hand side of Eq. (17),
has the same value for both states. The front solution at
this point is

CµM
± (ζ ) =

√
3

2
eiϕ√

1 + e±
1
2
√

3(ζ−ζ0)

, (18)

where ϕ is an arbitrary phase and ζ0 is the front’s core
position. By moving away from the Maxwell point, the
front dynamics is usually characterized by the motion
of the center of the front, which is defined as the front
position with the largest slope. The front propagates
from the global stable (global minimum) to a metastable
one (local minimum).23

In the general case (β 6= 1) localized states are possible
at the Maxwell point, µ = µM. They are explicitly given
by

CH(ζ ) =

√
3

2
eiϕ√
h(ζ )

(19)

with

h(ζ ) = 1 + e
1
2
√

3(ζ−ζ0)− 1
4

(β −1)e−
1
2
√

3(ζ−ζ0) (20)

and converge for β → 1 to the standard front solution,
Eq.(18).
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FIG. 5. Maximum amplitude of the localized states, Eq. (19),
as a function of β for ζ0 = 0.

Figure 4 shows the front solution as well as different
localized states for different values of β . In the case of
β = 1 only the front solution exists, while the homoclinic
orbits are found for β < 1. As is shown in Fig. 5, the
maximum amplitude of the localized states increases for
increasing β . We remark that these solutions are unsta-
ble away from the Maxwell point.

C. Onset of oscillatory convection

The procedure of deriving the amplitude equation in
the stationary case is similar to that of the stationary one,
cf. Sec. IV A. The linear solution, u0 = [A1 exp(ikocx) +
A2 exp(−ikocx)]ū0(z)exp(iωoct) + c.c. contains two ampli-
tudes, A1,2 for the left and right travelling waves.20 Using

ε2 = (Ra−Raoc)/Raoc as expansion parameter the solv-

ability condition in O(ε7/2) renders a set of two coupled
complex cubic-quintic Ginzburg-Landau equations,24,25

describing the slow dynamics of Ai(X ,T ) in the long wave-
length limit

Λ0
∂A1

∂T
= Λ1

∂ 2A1

∂X2 + ε
4
Λ2A1

+
(
ε

2
Λ3|A1|2 + ε

2
Λ4|A2|2 + Λ5|A1|4 + Λ6|A2|4

)
A1, (21)

Λ0
∂A2

∂T
= Λ1

∂ 2A2

∂X2 + ε
4
Λ2A2

+
(
ε

2
Λ3|A2|2 + ε

2
Λ4|A1|2 + Λ5|A2|4 + Λ6|A1|4

)
A2. (22)

The coefficients {Λn} with n = (0, ..,6) are complex func-
tions of the parameters and are given in the Appendix.

Figure 6 shows the real and imaginary parts of the
quintic saturation coefficient, Λ5, as a function of the
Lewis number L∈ {0.5,5} for three different values of the
separation ratio ψ =−0.1,−0.2, and −0.3 at the porosity
number χ = 1. The real part (top) is negative for the
material parameters chosen. It decreases with increasing
L and decreases with decreasing ψ. To the contrary, the
imaginary part (bottom) is positive and increases with
increasing L, except for very small L, where it shows a
minimum. There is only a very slight dependence on ψ.

Figure 7 shows on the top (bottom) the real (imag-
inary) part of the quintic coupling coefficient, Λ6, as a
function of L for different values of ψ at χ = 1. Both
parts are positive and show a minimum at some smaller
value of L, and decrease with increasing ψ.

Finally, we remark that Eqs. (21) and (22) can be
used to study secondary instabilities, such as traveling
and standing waves, and the Benjamin-Feir instability.21

These equations can also describe interesting spatiotem-
poral behavior, like solitons, breathers, localized chaos
and more.26–36

V. FINAL REMARKS

In this article, we have reported both theoretical and
numerical results on convection in binary liquids in a
porous medium. We have presented the derivation of
the amplitude equations in the subcritical regime result-

FIG. 6. Real (top) and imaginary (bottom) parts of the quin-
tic coupling coefficient Λ5 as a function of L for different values
of ψ at χ = 1.
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FIG. 7. Real (top) and imaginary (bottom) parts of the
quintic saturation coefficient Λ6 as a function of L for different
values of ψ for χ = 1.

ing in a real (complex) cubic-quintic Ginzburg-Landau
equation for the stationary (oscillatory) case.

The dependence of the cubic and the quintic coeffi-
cients on the material parameters are discussed, and the
existence range of the subcritical regime in parameter
space is explored for the stationary instability. For a
certain ratio between the cubic and quintic coefficient, a
front solution is possible that relates two different homo-
geneous states. An analytical expression is given for that
solution at the Maxwell point, where the front is mo-
tionless. More generally, within the subcritical regime
localized states are found analytically, which are stable
at the Maxwell point, but decay away from it.

For the oscillatory convection, we give analytical ex-
pressions for the complex coefficients of the amplitude
equations in terms of the material parameters and the
critical, critical Rayleigh number, critical wavelength,
and critical frequency. The critical instability values,
however, are known as functions of the material parame-

ters only numerically in the general case. This is used to
show the dependence of the real and imaginary part of
the quintic coupling coefficient and the quintic saturation
coefficient on the material parameters for a small finite
porosity number.

The complete study of the space parameter in the sub-
critical regime for the oscillatory bifurcation is still in
progress and will be presented in future works.
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Appendix A: Coefficients of the cubic-quintic complex GL
equation

The complex coefficients Λ j with j = (0, ...,6) of the
cubic-quintic complex GL Eqs. (21) and (22) are split
into their real and imaginary parts, Λ j = Λ j,R + iΛ j,R.
They are given analytically in this Appendix as func-
tions of L, ψ, and χ with the abbreviations Q = q2

oc,
D = π2 + q2

oc, ω = ωoc, and R = Raoc, which are:

Λ0,R = LχD3 +(L + 1)D2−3χDω
2− (ψ + 1)QR (A1)

Λ0,I = 2ωD([L + 1]χD + 1) (A2)

Λ1,R =
4π2(L + 1)χ(L2 + ψ[L2 + L + 1])D2

ψ + 1
+ LD2

−4LD−12LDQ−R(Lψ + L + ψ)(D + Q)

+4(L + 1)χQω
2 + 2(L + 1)χω

2−ω
2 (A3)

Λ1,I = χω
(
LD2−60QD

)
+ 12χωDπ

2
(

L2 +
ψ[L + 1]

ψ + 1

)
−χω

3 + ωD(−χL + L + χ + 1)

−4ωQ(L + 1)−ω(L + 1 +[ψ + 1]R) (A4)

Λ2,R = R(ψL + ψ + L)DQ (A5)

Λ2,I = R(ψ + 1)Qω (A6)

Λ3,R =
ψDQR

(
[L3 + L]D + 1

)
8π2L2 +

(Lψ + ψ)DQR
8π2 (A7)

Λ3,I =
ψDQR

(
[L3 + L]D + 1

)
8π2L2 +

QRω

8π2 (A8)
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Λ4,R =
DQψR

(
DL[L2 + 1]+ 1

)
8π2L2 +

LψD
(
LD2 + ω2

)
L2D2 + ω2 +(DQL[ψ + 1)]+ 1)

(
π2R

4D2−ω2 +
R

8π2

)
+

4π2DRω2 ([L−1]D + Q)

(4D2 + ω2)2

(A9)

Λ4,I =− 4π2LD2Rω

(4D2 + ω2)2

(
ψ
(
LD2 + ω2

)
L2D2 + ω2 +(ψ + 1)Q

)
+ ω ([L−1]δ + Q)

(
π2R

4D2−ω2 +
R

8π2

)
+

ωψQR(
[
L3 + L]D + 1

)
8π2L2

(A10)

Λ5,R =
ψD2QR

(
L3D3

[
L3 + 1

]
+ ω2

[
L
(
D
[
L3 + 1

]
+ R−π

)
−1
]
−L2D2 [πL + R + 1]

)
16π2L3 (D2 + ω2)(L2D2 + ω2)

+
QRψ

16π2 (D2 + ω2)

(
(L + 1)D2−

ω3
(
L2D2 +[L + 1]D + ω2

)
L3 (L2D2 + ω2)

)
(A11)

Λ5,I =
ψDQRω

(
L
[
ω2
([

L3 + 1
]

D + R−π
)

+ L2
(
L3 + 1

)
D3−LD2 (πL + R + 1)

]
−ω2

)
16π2L3 (D2 + ω2)(L2D2 + ω2)

+
ψDQRω

(
L2D2 +[L + 1]D + ω2

)
16π2L3 (D2 + ω2)(L2D2 + ω2)

+
DQRω2

16π2 (D2 + ω2)
(A12)

Λ6,R = Γ1(Lψ + ψ)DQ−Γ2ω
2 + Γ3 (A13)

Λ6,I = Γ2(Lψ + ψ)DQ + Γ1ω
2 + Γ4 (A14)

where Γ1 =
π2DR

(
32π8L2 + 4π4[(L−2)L−2]ω2−ω4

)
4(ω2 + 4π4)(4π4L2 + ω2)2 (D2 + ω2)

+
DR

16π2L2 (D2 + ω2)

+
π7ω

(
4πL

[
64π8L4 + 32π4L2ω2 + π3L + 4ω4

]
−ω2

)
4(ω2 + 4π4)(4π4L2 + ω2)4 (A15)

Γ2 =
π9DR2ω2(1−2Lω2)

(
4π4L2−ω2

)
+ 2π4LD2R2ω(ω2 + 8π4)(4π4L2 + ω2)2

2(ω2 + 4π4)(D2 + ω2)2 (4π4L2 + ω2)4

− π4DRω(4π4L2−ω2)

2(4π4L2 + ω2)2 (D2 + ω2)(ω2 + 4π4)
(A16)

Γ3 =−Γ2(L−1)LψDQω

π4L2 + ω2 +
Γ1LψQ

(
LD2 + ω2

)
π4L2 + ω2 + Φ0LψD2Q−Φ1LψDQω (A17)

Γ4 =
Γ1(L−1)LψDQω

π4L2 + ω2 +
Γ2LψQ

(
LD2 + ω2

)
π4L2 + ω2 −LΦ0ψD2Q + LΦ1ψD2Q (A18)

with Φ0 =
DR

16π2L2 (D2 + ω2)
+

4π9L2Rω2
(
ω2−4π4L

)
(ω2 + 4π4)(4π4L2 + ω2)2 (D2 + ω2)

−
π4Rω2

(
L2D2 +[L + 1]D + ω2

)
(4π4L2 + ω2)(D2 + ω2)(L2D2 + ω2)

−
2π6Lω2

(
4π5L[L + 1]DR +

(
ω2 + 4π4

)(
D2 + ω2

))
(ω2 + 4π4)(4π4L2 + ω2)2 (D2 + ω2)

+
π2R

(
4π4L2−ω2

)(
L2D3 [R + 1]+ Dω2 (1−LR)

)
4L(4π4L2 + ω2)2 (D2 + ω2)(L2D2 + ω2)

+
π3R

(
4π4L2−ω2

)(
D
(
ω2 + 4π4

)2 (4π4L2 + ω2
)
−8π6L(L + 1)ω2

)
4(ω2 + 4π4)2 (4π4L2 + ω2)3 (D2 + ω2)

+
π6L

(
4π4L2−ω2

)(
πDR

(
4π4L−ω2

)
+
(
ω2 + 4π4

)(
D2 + ω2

))
(ω2 + 4π4)(4π4L2 + ω2)3 (D2 + ω2)

(A19)
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and Φ1 =− 8π11L2(L + 1)Rω3

(ω2 + 4π4)2 (4π4L2 + ω2)2 (D2 + ω2)
−

π7LRω
(
4π4L−ω2

)(
4π4L2−ω2

)
(ω2 + 4π4)(4π4L2 + ω2)3 (D2 + ω2)

−
π2Rω

(
4π4L2−ω2

)(
L2D2 +[L + 1]D + ω2

)
4L(4π4L2 + ω2)2 (D2 + ω2)(L2D2 + ω2)

−
π4Rω

(
L2δ 6 [R + 1]+ Dω2 (1−LR)

)
(4π4L2 + ω2)(D2 + ω2)(L2D2 + ω2)

−
π4ω

(
4π4L2−ω2

)(
4π4D(πL[L + 1]R + D)+

[
D2 + 4π4

]
ω2 + ω4

)
2(ω2 + 4π4)(4π4L2 + ω2)3 (D2 + ω2)

−
4π8L2ω

(
4π4D [πLR + D]+ ω2

[
D2−πDR + 4π4

]
+ ω4

)
(ω2 + 4π4)(4π4L2 + ω2)2 (D2 + ω2)

− π5LDRω

(4π4L2 + ω2)(D2 + ω2)
(A20)

Finally, let us remark that the critical values of the oscillatory instability, qoc, ωoc, and Raoc, (abbreviated here as
Q, ω, and R, respectively) are also functions of L, ψ, and χ, but generally only known numerically. In the limit χ� 1
they are given by Eqs. (9) - (11), respectively.
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