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We study two-dimensional localized patterns in weakly dissipative systems that are driven para-
metrically. As a generic model for many different physical situations we use a generalized nonlinear
Schrödinger equation that contains parametric forcing, damping, and spatial coupling. The latter
allows for the existence of localized pattern states, where a finite-amplitude uniform state coexists
with an inhomogeneous one. In particular, we study numerically two-dimensional patterns. Increas-
ing the driving forces, first the localized pattern dynamics is regular, becomes chaotic for stronger
driving and finally extends in area to cover almost the whole system. In parallel, the spatial struc-
ture of the localized states becomes more and more irregular ending up as a full spatio-temporal
chaotic structure.

PACS numbers: 75.78.Fg,85.75.-d,89.75.Kd

I. INTRODUCTION

Dynamic systems that are driven out of equilibrium
can show different states, which in the long-time, asymp-
totic limit can be regular (e.g. stationary, periodic
or quasi-periodic) or chaotic. In space, those states
are either homogeneous or show a pattern [1]. Non-
equilibrium allows for the coexistence of such phases
within a broad range of material parameters that char-
acterize the peculiar system under consideration. In par-
ticular, one can find localized states, where one state oc-
cupies only a restricted spatial area, while another one
fills the rest of the space. If the latter is uniform and
the former a pattern, the structure is called a localized
pattern.

Here we are interested in localized chaotic patterns,
where the pattern state in the restricted area is chaotic.
Such states have attracted much attention from both,
the experimental [2–6] and theoretical [7–17] point of
view. We concentrate on parametrically driven weakly
dissipative systems [18], i.e. genuine time reversible sys-
tems that are only slightly perturbed by the injection
and energy dissipation due to the driving. Among them
are parametrically driven nonlinear lattices, pulse propa-
gation in nonlinear optical fibers, phase-sensitive optical
amplifiers, magnetization waves in easy-plane ferromag-
nets subject to an oscillatory magnetic field, Faraday-
vibrated damped coupled nonlinear pendula chains, liq-
uid crystalline lightwalves with optical feedback, con-
vection in binary mixtures, magnetic fluids and others
[19–27].

Those systems typically show patterns, and in partic-
ular localized patterns, close to the bifurcation, where
the parametrically driving field is in subharmonic reso-
nance with the system’s dynamics. As a generic model
for the theoretical description serves an amplitude equa-
tion derived by the standard weakly nonlinear stability
analysis [28]. In lowest order of the expansion involved
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the parametrically driven damped nonlinear Schrödinger
(PDDNLS) equation [29] is obtained. It has been used
to discuss, e.g., soliton like solutions [30–32], two-soliton
states [33, 34], and spatio-temporal chaos [35]. However,
it only allows for the coexistence of a pattern state with
the trivial, zero amplitude state [36], but not with a uni-
form, finite amplitude one [37–41], which is the prereq-
uisite [42, 43] for the existence of localized states of the
kind we are interested in. For their description the ex-
pansion has to be continued to the next order, resulting
in the generalized parametrically driven damped nonlin-
ear Schrödinger (gPDDNLS) equation [37].

Recently, we have used this equation to study [44] lo-
calized chaotic patterns close to the subharmonic bifur-
cation. Those patterns are found to be generally one-
dimensional. In this article, we report the finding of new
chaotic structures that are localized in two dimensions.

In the following we first present the underlying ampli-
tude equation in dimensionless form and discuss, where
localized states can be expected. We then discuss the
numerical methods and tools that allow us the get and
characterize those states. Finally we show the numeri-
cal results, in particular the 2D-localized chaotic states,
which, as a non-trivial result, are stable even in two di-
mensions. The manuscript is arranged as follow: In Sec.
II the theoretical model is presented, in Sec. III nu-
merical simulations are performed and the results are
discussed. Finally, conclusions are given in Sec. IV.

II. THEORETICAL MODEL

We will employ the gPDDNLS equation for the di-
mensionless two-dimensional amplitude, A = A(x, y, t),
the envelope of the underlying oscillations of the system.
Using suitable dimensionless space and time coordinates
it takes the form

∂A

∂t
= −iνA− i|A|2A− i∇2A− µA+ γA∗

+γ
{
b|A|4A∗ + δA3 + β|A|2A3 + α|A|2A∗

}
+ia|A|4A+ κ∇2A− c|A|2A, (1)

containing (in the first line) detuning, the distance of the
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frequency of the external driving to the subharmonic res-
onance (ν), cubic saturation, dispersion, linear damping
(µ), and external linear driving (γ), with A∗ the com-
plex conjugate of A and ∇2f = ∂2f/∂x2 + ∂2f/∂y2.
Nonlinear parametric forcing (∼ b, δ, β, α) and quintic
saturation (a), diffusion (κ), nonlinear damping (c) are
described in the second and third line, respectively. This
equation has, e.g. the trivial solution, A = 0, corre-
sponding to no oscillations of the underlying physical
system, and A = const. describing a (non-trivial) homo-
geneous and steady oscillation.

The first line of Eq. (1) constitutes the PDDNLS equa-
tion, which reduces for µ = 0 = γ to the standard
nonlinear Schrödinger equation that is used to describe
Hamiltonian equilibrium systems [45]. For the PDDNLS
equation the trivial, zero amplitude solution is always
(linearly) stable. In fact, stable localized states that con-
nect asymptotically to the zero background solution were
found in [36]. Nevertheless, the constant non-trivial solu-
tions are unstable, due to the spatial coupling, ∼ i∇2A,
[37]. Therefore, PDDNLS cannot describe (chaotic) lo-
calized patterns that are asymptotically connected with
non-trivial homogeneous solutions.

Another generalization of the PDDNLS equation that
leads to stable homogeneous oscillating states is the
complexification of its parameters producing a para-
metrically driven complex Ginzburg Landau model [46–
48]. Other generalizations applied to intrinsic localized
modes in parametrically driven arrays of nonlinear res-
onators can be found in Ref. [49].

The gPDDNLS Eq. (1) allows for stable non-trivial
homogeneous solutions. Not all of the additional terms
are necessary to obtain this goal and we will choose
κ = 0 = c (some effects of those parameters have been
discussed in [46–49]). The non-trivial homogeneous am-
plitude states bifurcate from A = 0 at γ2 = µ2 + ν2,
which defines the so-called first Arnold tongue in the
γ−ν parameter space. The stability of these states for a
wide range of parameters can be established numerically.
Their stability allows for generating localized states that
connect one homogeneous state with other homogeneous
one. For example, connecting the zero state with a non-
trivial one leads to kink patterns [46], connecting two
different nontrivial states gives pulses [37].

In addition, the gPDDNLS Eq. (1) shows spatially
inhomogeneous solutions, depicting extended or (one-
dimensional) localized patterns. It can be shown ana-
lytically [44, 47] that they bifurcate via a finite ampli-
tude instability from the ground state within the Arnold
tongue, for γ2 > µ2+ν2 and ν < 0. These pattern states
are stable and undergo, when the driving γ is increased,
multiple bifurcations from being stationary (in time) to
oscillatory and finally to chaotic behavior. This is also
found by numerical investigations. In the following we
will show numerically that in this region of the parameter
space also 2-dimensional, in particular chaotic, localized
patterns exist and are are stable.

III. NUMERICAL SIMULATIONS

To solve numerically the amplitude equation, Eq. (1),

FIG. 1. Evolution of |A(x, y, t)|, color-coded on the right, for
a chaotic localized pattern at γ = 0.9 after an initial time
interval ∆t = 5.6×103 has elapsed. Note the blue, non-zero
background.
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FIG. 2. Energy function Q of a chaotic localized 2-dimen-
sional pattern, as a function of time (a) and its corresponding
Fourier power spectrum (b) at γ = 0.9, after a time interval
∆t = 5.6× 103 has elapsed.

we use a fifth-order Runge-Kutta scheme with variable
step length for the time evolution and a six-order cen-
tral finite-difference method to approximate the spatial
derivatives over the system’s area 2L×2L. Here we con-
sider L = 100 and use 500 × 500 points, which implies
∆x = ∆y = 200/500 = 0.4. We use a double precision
Runge-Kutta method described in Ref. [50], which ad-
mits the error tolerance to be chosen and which we set as
10−7. We use von-Neumann boundary conditions. We
have also checked smaller and larger area sizes to guaran-
tee that there are no finite size effects for L = 100. After
any temporal transients have faded away we have contin-
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FIG. 3. Largest Lyapunov exponent as a function of γ at
ν = −0.05.
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FIG. 4. Bifurcation diagram of Qmax as a function of γ. The
inset represents the number of different values of Qmax.

ued the calculations for at least twice the full transient
time with a maximum integration time t = 8.0× 103.

We will essentially characterize the different types of
dynamical behavior of the system by the energy function,
Q, the statistical width of the localized pattern ∆, and
the largest Lyapunov exponent of the evolving dynamics,
λmax. The first one is the norm of the amplitude defined
by

Q(t) =

(
1

2L

)2 ∫ L

−L

∫ L

−L
|A(t, x, y)|2 dxdy, (2)

which is often used for the characterization of non-
regular dynamics in optics [9–12], localized patterns in
fluids, and other physical systems [51, 52]. Q is generally
a function of time reflecting the temporal information of
the patterns, i.e. in a stationary, (quasi-) periodic, or
chaotic regime, Q(t), too, is constant, (quasi-) periodic,
or chaotic, respectively. To identify the different tempo-
ral regimes, we calculate its power spectrum, |S (f)| in
frequency space f .

A more quantitative aspect of the dynamics is pro-
vided by the largest Lyapunov exponent, λmax, [53], de-
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FIG. 5. Time average of the width, < ∆ >t, as a function of
γ.

fined by

λmax = lim
t→∞

1

t
ln
‖δA(t, x, y)‖
‖δA(t0, x, y)‖

, (3)

where ‖•‖ ≡ (
∫ L

−L
∫ L

−L|•|
2 dxdy)1/2 and δA ≡ δAr+i δAi

satisfies the differential equation

∂

∂t

(
δAr

δAi

)
= J̄ ·

(
δAr

δAi

)
(4)

with J̄ the Jacobian matrix of Eq. (1) with respect to A.
Although Eq. (4) is linear with respect to δA, it depends
on A due to the nonlinear terms in Eq. (1). Hence, to
calculate the Lyapunov exponent one needs to solve the
coupled system given by Eqs. (1) and (4).

The number λmax quantifies how fast the distance,
δA, between two initially close trajectories of the field
A either vanishes (λmax < 0) or diverges exponentially
(λmax > 0). The latter is the hallmark of chaotic be-
havior. We have calculated λmax from t0 = 5.6 × 103

up to tmax = 8.0 × 103. In order to overcome expo-
nential divergences we rescale ‖δA(t, x, y)‖ by the ini-
tial norm ‖δA(t0, x, y)‖ and take as time steps ∆t =
800/1024 = 0.78125. This method has been extensively
used for many different dynamical systems to quantify
chaos [53–59] and also allows to discriminate between
quasi-periodic and chaotic dynamics.

For the analysis of the spatial patterns we compute
first the normalized moment Σ =<x2+y2> − <x>2 − <
y>2 with |A(t, x, y)|2 as the statistical weight. We then
use ∆ = 2|Σ− Σc|1/2 as a measure for the width of the
localized pattern, where Σc = (2/3)L2 is the moment for
a stationary state with A = const. The time averaged
∆t is used below to present the spatial aspects of the
results.

In this article, we concentrate the discussion on the
influence of the driving force. Fixing the detuning to
ν = −0.5 in order to scan the appropriate parameter
space region, we use the driving force coefficient, γ, as
the bifurcation parameter. For the material properties
we choose µ = 0.35, b = 1/12, δ = −4/15, β = −1/24,
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FIG. 6. A snapshot at t = 5.6 × 103 of the real part of A
for localized and extended patterns at different values of γ:
For γ = 0.6 a localized periodic one with λmax = −0.007
(upper left); for γ = 0.7 a localized quasiperiodic one with
λmax = 0.000 (upper right); for γ = 0.9 a localized chaotic
one with λmax = 0.049 (lower left); for γ = 1.1 an extended
chaotic one with λmax = 0.134 (lower right). Videos are
deposited in the Supplementary Material for γ = 0.7 and
0.9.

α = 0.65, and a = 1/6, since for those values an ex-
perimental realization might be possible. For a pendula
chain system similar values can be derived [37–39].

The central result we want to report in this article is
shown in Fig. 1 – a chaotic structure that is localized in
two dimensions. The values of |A(x, y)| for four different
fixed times (horizontal planes) is depicted using the color
code on the right. The blue areas outside the localized
structure have a constant, non-zero amplitude. For the
intermediate times only those locations are shown, where
|A| = 1, for visibility reasons. The irregular behavior in
time is obvious. To be more precise we show the energy
function Q(t), Eq. (2), for a long time period and the
resulting Fourier spectrum in Fig. 2. Both show the
typical behavior of chaotic time sequences.

This is corroborated by the largest Lyapunov exponent
shown in Fig. 3. For a driving force parameter γ = 0.9
used in the previous Figs., λmax is positive indicating
chaos. There is a kind of transition at around γ = 0.7,
below which λmax is negative and the behavior regular.
Above, λmax generally is positive. However, there are
still some special values of γ, where λmax = 0, and the
system is quasi-periodic. Such islands become sparse
and finally disappear, when γ is increased further. For
γ & 1.0 another change in the behavior (in the average
slope of λmax(γ) can be seen. Matching information is
gained from the maximum values of Q(t) that can be
found within a given time interval. In the periodic case
all maxima found are equal and only one value for Qmax

is found. This is the case for γ < 0.7 in Fig. 4, where
Qmax(γ) is a smoothly increasing line. In the chaotic
(and quasi-periodic) regime, many maxima exist as is

FIG. 7. 3-D representation of the localized chaotic structure
at γ = 0.9, shown in the lower left part of Fig. 6. Appropriate
videos are deposited in the Supplemental Material [60].

shown in the inset of that figure. They have different
values Qmax showing up in Fig. 4 as a band of finite
width. Again, for γ & 1.0 a dramatic change in the
behavior is seen.

Further understanding of this localized chaotic struc-
ture is obtained by considering the spatial structure. Fig.
5 shows the time-averaged width of the pattern as a func-
tion of the driving. In the regime of regular dynamics
the averaged size of the pattern is generally a smooth
function of the driving, only interspersed by a few well-
defined jumps. In the time-chaotic regime also the av-
eraged width changes rather abruptly with the driving
force, while in the final regime at γ & 1.0 the pat-
tern grows dramatically, but in a strongly erratic man-
ner. The appropriate patterns for the different regimes
are shown as snapshots in Fig. 6. The regular dynam-
ics refers to a regular ring structure (upper left frame).
Since the mean width slightly decreases with increasing
driving force, an additional ring is added for a few spe-
cial values of the driving force giving rise to the jumps
shown in Fig. 5. When the dynamics of the localized
pattern is chaotic, also the spatial structure is irregular
(lower left frame). This is obvious from Fig. 7, which de-
picts this case, not only by characterizing the values of
the (real part of the) amplitude A by colors, but also by
spikes of different height. We mention that this localized
chaotic solution grows rapidly into an extended one, if
the PDDNLS equation is used instead of the gPDDNLS
one [60].

The combination of temporal chaos and spatial irreg-
ularity into spatio-temporal chaos is best viewed in the
videos (for γ = 0.7 and 0.9) we have deposited in the
Supplemental Material [60]. The transition from a lo-
calized to an extended (chaotic) pattern for very strong
driving is demonstrated in the lower right frame of Fig.
6.

IV. CONCLUSIONS

Spatiotemporal localized structures are found in a
two-dimensional dissipative parametrically driven sys-
tem. The prototype model is a generalization of the
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parametrically driven damped nonlinear Schrödinger
equation, which describes parametric instabilities in flu-
ids, granular materials, optical devices, nonlinear pen-
dulum chains, as well as in magnetic systems. Hence, we
expect that such two-dimensional localized states can be
found in a wide range of physical systems. The vari-
ous possible states are characterized by Lyapunov expo-
nents and bifurcation diagrams. With increasing driv-
ing parameter we first find periodic localized states, and

(a small range of) quasi-periodic ones, while above a
threshold also chaotic localized states are obtained. Fi-
nally, the latter gradually extend in space and become
extended states for very large driving parameters.

ACKNOWLEDGMENTS

The authors acknowledge partial support from
FONDECYT 1120764, CONICYT ANILLO ACT 1410
and center of excellence with BASAL/CONICYT financ-
ing, grant FB0807, CEDENNA.

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65,
851 (1993).

[2] C. Weizhong, W. Rongjue, and W. Benren, Phys. Rev.
E 53, 6016 (1996).

[3] K. E. Daniels, B. B. Plapp, and E. Bodenschatz, Phys.
Rev. Lett. 84, 5320 (2000).

[4] A. B. Ustinov, V. E. Demidov, A. V. Kondrashov, B. A.
Kalinikos, and S. O. Demokritov, Phys. Rev. Lett. 106,
017201 (2011).

[5] Z. Wang , A. Hagerstrom, J. Q. Anderson, W. Tong, M.
Wu, L. D. Carr, R. Eykholt, and B. A. Kalinikos, Phys.
Rev. Lett. 107, 114102 (2011).

[6] N. Verschueren, U. Bortolozzo, M. G. Clerc, and S. Resi-
dori, Phys. Rev. Lett. 110, 104101 (2013).

[7] B. A. Malomed, D. F. Parker, and N. F. Smyth, Phys.
Rev. E 48, 1418 (1993)

[8] R. J. Deissler and H. R. Brand, Phys. Rev. Lett. 74,
4847 (1995).

[9] N. Akhmediev, J. M. Soto-Crespo, and G. Town, Phys.
Rev. E 63, 056602 (2001).

[10] J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. Lett.
95, 024101 (2005).

[11] J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N.
Devine, Phys. Rev. E 75, 016613 (2007).

[12] A. Ankiewicz, N. Devine, N. Akhmediev, and J. M. Soto-
Crespo, Phys. Rev. A 77, 033840 (2008).

[13] D. Turaev, M. Radziunas, and A. G. Vladimirov, Phys.
Rev. E 77, 065201 (2011).

[14] Y. Azizi and A. Valizadeh, Phys. Rev. A 83, 013614
(2011).

[15] Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev.
Mod. Phys. 83, 247 (2011).

[16] O. Descalzi, C. Cartes, J. Cisternas, and H. R. Brand,
Phys. Rev. E 83, 056214 (2011).

[17] C. Cartes, O. Descalzi, and H. R. Brand Phys. Rev. E
85, 015205 (2012).

[18] M. Clerc, P. Coullet, and E. Tirapegui, Phys. Rev. Lett.
83, 3820 (1999).

[19] B. Denardo, B. Galvin, A. Greenfield, A. Larraza, S.
Putterman, and W. Wright, Phys. Rev. Lett. 68, 1730
(1992).

[20] J. N. Kutz, W. L. Kath, R.-D. Li, and P. Kumar, Opt.
Lett. 18, 802 (1993).

[21] S. Longhi, Phys. Rev. E 53, 5520 (1996).
[22] M. G. Clerc, S. Coulibaly, and D. Laroze, Europhys.

Lett. 90, 38005 (2010).
[23] N. V. Alexeeva, I. V. Barashenkov, and G. P. Tsironis,

Phys. Rev. Lett. 84, 3053 (2000).
[24] I. V. Barashenkov and E. V. Zemlyanaya, Phys. Rev.

Lett. 83, 2568 (1999).
[25] E. V. Zemlyanaya and N. V. Alexeeva, Theor. Math.

Phys. 159, 870 (2009).
[26] N. Verschueren, U. Bortolozzo, M.G. Clerk. and S. Resi-

dori, Phil. Trans. R. Soc. A 372, 20140011 (2014).
[27] O. Batiste, E. Knobloch, A. Alonso, and I. Mercader, J.

Fluid Mech. 560, 149 (2006).
[28] A. C. Newell and J. A. Whitehead, J. Fluid Mech. 28,

279 (1969).
[29] J. W. Miles, J. Fluid Mech. 148, 451 (1984).
[30] D. Urzagasti, D. Laroze, M. G. Clerc, and H. Pleiner,

Europhys. Lett. 104, 40001 (2013).
[31] I. V. Barashenkov, E. V. Zemlyanaya, and T. C. van

Heerden, Phys. Rev. E 83, 056609 (2011).
[32] I. V. Barashenkov, M. M. Bogdan, and V. I. Korobov,

Europhys. Lett. 15, 113 (1991).
[33] D. Urzagasti, D. Laroze, M. G. Clerc, S. Coulibaly, and

H. Pleiner, J. Appl. Phys. 111, 07D111 (2012).
[34] I. V. Barashenkov and E. V. Zemlyanaya, Phys. Rev. E

83, 056610 (2011).
[35] V. S. Shchesnovich and I. V. Barashenkov, Physica D

164, 83 (2002).
[36] I. V. Barashenkov, N. V. Alexeeva, and E. V.

Zemlyanaya, Phys. Rev. Lett. 89, 104101 (2002).
[37] M. G. Clerc, S. Coulibaly, and D. Laroze, Phys. Rev. E

77, 056209 (2008).
[38] M. G. Clerc, S. Coulibaly, and D. Laroze, Int. J. Bif.

Chaos 19, 2717 (2009).
[39] M. G. Clerc, S. Coulibaly, and D. Laroze, Int. J. Bif.

Chaos 19, 3525 (2009).
[40] M. G. Clerc, S. Coulibaly, and D. Laroze, Physica D

239, 72 (2010).
[41] M. G. Clerc, S. Coulibaly, and D. Laroze, Europhys.

Lett. 97, 30006 (2012).
[42] W. van Saarloos and P. C. Hohenberg, Phys. Rev. Lett.

64, 749 (1990).
[43] P. Coullet, Int. J. Bif. Chaos 12, 245 (2002).
[44] D. Urzagasti, D. Laroze, and H. Pleiner, Eur. Phys. J.

ST 223, 141 (2014).
[45] C. Sulem and P. L. Sulem, The Nonlinear Schrödinger

Equation: Self-Focusing and Wave Collapse ( Springer-
Verlag, NY, 1999).

[46] I. V. Barashenkov, S. Cross, and B. A. Malomed, Phys.
Rev. E 68, 056605 (2003).

[47] J. Burke, A. Yochelis, and E. Knobloch, SIAM J. Appl.
Dyn. Sys. 7, 651 (2008).

[48] Y.-P. Ma, J. Burke, and E. Knobloch, Physica D 239,
1867 (2010).

[49] E. Kenig, B. A. Malomed, M. C. Cross, and R. Lifshitz,
Phys. Rev. E 80, 046202 (2009).

[50] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in FORTRAN (Cambridge
University Press, UK, 1992).



6

[51] O. Batiste, E. Knobloch, A. Alonso, and I. Mercader, J.
Fluid Mech. 560, 149 (2006).

[52] J. Burke and E. Knobloch, Chaos 17, 037102 (2007).
[53] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano,

Physica D 16, 285 (1985).
[54] J. P. Eckmann, D. Ruelle, and S. Ciliberto, Phys. Rev.

A 34, 4971 (1986).
[55] K. Geist, U. Parlitz, and W. Lauterborn, Prog. Theor.

Phys. 83, 875 (1990).
[56] J. D. Scheel and M. C. Cross, Phys. Rev. E 74, 066301

(2006).

[57] A. Karimi, and M. R. Paul, Phys. Rev. E 85, 046201
(2012)

[58] D. Laroze, P.G . Siddheshwar, and H. Pleiner, Commun.
Nonlinear Sci. Numer. Simulat. 18, 2436 (2013).

[59] D. Laroze, and H. Pleiner, Commun. Nonlinear Sci. Nu-
mer. Simulat. 26, 167 (2015).

[60] See Supplemental Material at [URL will be inserted by
publisher] for videos of the localized chaotic structures
and for pictures that show the delocalization, if the con-
ventional PDDNLS equation is used.


	Two-dimensional localized chaotic patterns in parametrically driven systems
	Abstract
	Introduction
	Theoretical Model
	Numerical simulations
	Conclusions
	Acknowledgments
	References


