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Abstract

In magnetic fluids the viscosity can depend on an external magnetic field. We theoretically investigate the
influence of this magneto-viscous effect on the thermal convection thresholds for viscoelastic ferrofluids,
which are described by a linear Oldroyd model. Such a system is influenced by a static magnetic field not only
via the Kelvin force, but also through the magneto-viscous effect. In particular we find that these two kinds of
influence compete adversely when the threshold for the oscillatory instability is considered. While the Kelvin
force tends to decrease the critical Rayleigh number, the magneto-viscous effect increases it. The critical
properties at the onset of the oscillatory instability are discussed as a function of the viscoelastic parameters,
the external field strength, and the magneto-viscous coefficient. The transition between the stationary and the
oscillatory instability tuns out not to be affected by the magneto-viscous effect. Examples for codimension-2
lines are given.
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1. Introduction

The purpose of the present paper is to analyze
the influence of a magnetic field dependence of the
viscosity on the convective threshold of viscoelas-
tic magnetic fluids. As model systems we consider
ferrofluids [1], suspensions of ferromagnetic parti-
cles in a carrier liquid, in the coarse-grained approx-
imation, where particle diffusion and thermodiffu-
sion are neglected. The magnetic fluid properties can
then be modeled as electrically nonconducting su-
perparamagnets. Such suspensions are often slightly
visco-elastic, which we describe by a linear Oldroyd
model that contains relaxation of the stress and re-
tardation of the "strain rate". The use of such mod-
els is rather popular, since viscoelasticity occurs in
the form of a pseudo-constitutive equation and the
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structure of the hydrodynamic equations remains un-
changed. The more physical description, suitable to
generalizations to more complicated systems or to
the nonlinear domain, introduces the elastic free en-
ergy in terms of the strain tensor, which constitutes
an additional hydrodynamic degree of freedom. The
relaxation of the latter describes viscoelasticity as
transient elasticity. In the linear domain, however,
both types of descriptions are basically equivalent.

For magnetic suspensions, in particular highly
concentrated ones, the visco-elastic properties can
be magnetic-field dependent. In this study, however,
we concentrate on the magneto-viscous effect, i.e.
the magnetic field dependence of the viscosity [2].
The maximum increase of the viscosity that can be
obtained is about 30%. Although this looks like a
small effect, its influence on the bifurcation behav-
ior can be large, since this non-Boussinesq contribu-
tion breaks some symmetries of the underlying hy-
drodynamic equations. In addition, it constitutes a
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magnetic field influence directly on the (dissipative)
dynamics, in contrast to the more familiar magnetic
Kelvin force that acts on the static properties.

We will discuss the linear stability of stationary
and oscillatory instabilities driven by an applied tem-
perature gradient and an applied magnetic field. We
deal with the case of realistic boundary conditions,
and we numerically solve the dynamic equations us-
ing a collocation spectral method in order to deter-
mine the eigenfunctions and eigenvalues and conse-
quently the convective thresholds. The paper is orga-
nized as follows: In Sec. 2, the basic hydrodynamic
equations for viscoelastic magnetic fluid convection
are presented. In Sec. 3 the linear stability analysis
of the conduction state is performed. Finally, conclu-
sions are presented in Sec. 4.

2. Basic Equations

We consider a layer of thickness d of viscoelas-
tic magnetic fluid in a vertical (z direction) temper-
ature gradient, β = ∆T/d, antiparallel to the gravi-
tational field (strength g). An external magnetic field
H0 is assumed along the vertical direction. Within the
Boussinesq approximation the fluid is incompress-
ible (divv = 0) and the density ρ = ρ0 is constant,
except for the buoyancy force, where a linear depen-
dence on the temperature T is assumed

ρ = ρ0(1 + αT δT ) (1)

neglecting magnetic buoyancy, where αT is thermal
expansion coefficient. Here, we consider that these
constants take the values ρ0 = 103 kg/m3 and αT =
10−3 1/K [1]. The magnetization is treated statically
and does not have its own dynamics. In particular,
in the magnetization M thermal and nonlinear mag-
netic field effects are taken into account [3]

δM = χ0 δH + H0 (χT δT + χHH0 · δH) , (2)

where {χ0, χT , χH} are the respective susceptibili-
ties for which we take the values {1.9, 5× 10−2 1/K,
10−8m2/A2}. Here, we describe viscoelasticity by
the well-known linear Oldroyd model

(1 + λ1∂t)τij = 2νeff (1 + λ2∂t)Aij, (3)

relating the stress τij and its relaxation (λ1) with the
strain rate Aij = (1/2)(∇jvi +∇ivj) and its retarda-
tion (λ2). The effective viscosity νeff = ν1(λ1/λ2) is
different from the Newtonian viscosity ν1. Describ-
ing linear viscoelasticity by a relaxing strain field
[4, 5] and a finite elastic (plateau) modulus K1, one
finds K1 = 2ν1(1/λ2 − 1/λ1) . Since K1 > 0 and
ν1 > 0 for thermodynamic reasons, this implies the
restriction λ1 > λ2 on the Oldroyd model and shows
that the limit λ1 6= 0 and λ2 → 0 (often referred to
as the Maxwell model) is ill-defined, since it would
imply a diverging elastic modulus. Using nonlinear
viscoelasticity (for an application to thermal convec-
tion cf. [6] and to general flow situations cf. [7, 8])
one can show [9] that many (nonlinear) phenomeno-
logical models have similar problems and restrictions
when thermodynamics is applied.

The magneto-viscous effect [2] shows up in the
viscosity νeff , which is not constant, but depends on
the magnetic field

νeff = ν0(1 + ηH2) (4)

with ν0 the (effective) viscosity at zero field, and
with a positive magneto-viscous coefficient η. The
range for η will be (10−11 − 10−7) m2/A2. At least
for small fields this form is required by symme-
try. Indeed, measurements on dilute ferrofluids con-
firm this field dependence for up to field strengths
of H ≈ 10 kA/m. For very high fields the influ-
ence of the magnetic field saturates [2]. In the case
of magneto-rheological fluids not only the effective
viscosity, but also visco-elasticity is dramatically in-
creased by an external field, and qualitatively new
effects, like yield stress and thixotropy arise. Those
effects will not be considered here.

The remaining part of the hydrodynamics is that
of an incompressible superparamagnet and has been
given and applied to thermal convection previously
[3, 10, 11, 12, 13]. It is well known that such system
has a quiescent, flow free ground state that is purely
heat conducting

vcon = 0 (5)
Tcon = T0 − βz (6)
Hcon

z = H0(1 + ξβz) (7)

with ξ = χT/(1 + χ0 + χHH
2
0 ). The inhomogene-

ity in Eq. (7) is due to the magnetic properties of
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the fluid and follows from the general magnetostatic
Maxwell continuity conditions across the horizontal
boundaries, H⊥ = Hext

⊥ and Bz = Bext
z for the in-

ternal and external fields.
For the deviations from this ground state, vi,

θ = T − Tcon, and the magnetic potential φ with
H = H0−∇φ, linear dynamic equations have been
previously derived with the result (in dimensionless
form) [10, 11, 12]

∇ivi = 0 (8)
1

P
∂tvi = −∇ipeff +∇jτij

+δizRa [θ +M1(θ − ∂zφ)] (9)
∂tθ = w +∇2θ (10)
∂zθ = (∂2zz +M3∇2

⊥)φ (11)
∇2φext = 0 (12)

where∇2
⊥ = ∂2xx + ∂2yy.

We have used the characteristic scales, d for
length, d2/κ for time (with κ the thermal diffu-
sivity), βd for temperature, κ/d for velocity, and
βdξH0 for the magnetic fields. The Rayleigh num-
ber Ra = αTg∆Td3/κν0 that contains the thermal
driving and acts as the primary control parameter.
The Prandtl number P = ν0/κ relates the viscous
with the thermal diffusion properties of the fluid.
There are two standard magnetic numbers, M1 =
µ0βχ

2
TH

2
0/(ρ0gαT [1 + χ0]) characterizing the mag-

netic force relative to buoyancy and M3 = (1 +
χ0)/(1+χ0 +χHH

2
0 ) the nonlinearity of the magne-

tization. M1 is a secondary control parameter, since
the conducting state can also be driven into instabil-
ity by a large enough M1.

The viscoelastic Eq. (3) reads in linearized form
and assuming ξβd� 1

(1 + Γ∂t)τij = 2(1 +υ2 +υ1z)(1 + ΛΓ∂t)Aij, (13)

and contains two new dimensionless numbers re-
lated to the magneto-viscous effect, υ2 = ηH2

0 and
υ1 = 2η ξβdH2

0 . The former directly characterizes
the strength of the magneto-viscous effect, while the
latter describes its influence due to the inhomogene-
ity of the conductive ground state. The ratio υ1/υ2 =
2ξβd might be small, but the different spatial sym-
metry requires keeping both terms in Eq.(13). Gen-
erally, there is also a quadratic contribution in Eq.

(13), ∼ υ3z
2, which is of the same spatial symme-

try as the constant terms. Averaging 〈z2〉 = (1/2)d2

shows that it can be neglected compared to 1 + υ2.
Viscoelasticity is characterized by the Deborah

number Γ = λ1κ̄/d
2 and the relaxation ratio Λ =

λ2/λ1. Since λ1,2 are positive, so are Γ and Λ. The
Newtonian case is recovered by Γ → 0 and Λ → 1
(no elasticity), while the limit Λ→ 0 is unphysical.

For the numerical solutions we have to specify
the dimensionless numbers. The Ra can vary over
several orders of magnitude, while a typical value
for P in viscoelastic fluids is P ∼ 100 − 103. For
the magnetic numbers we consider the range M1 ∼
10−4 − 10 and M3 ∼ 1 [10, 14]. For aqueous sus-
pensions it is suggested that the Deborah number is
about Γ ∼ 10−3−10−1 [15, 16, 17, 18], but for other
kinds of viscoelastic fluids the Deborah number can
be as large as Γ ∼ 103. Unfortunately, no experi-
mental data are available for the relaxation ratio, so
we treat Λ as arbitrary in the range (0, 1).

3. Linear Stability Analysis

3.1. Mathematical Procedure
The flow equations (8), (9) and (13) can be com-

bined to a single equation for w, the z component
of the velocity, by a standard procedure, applying
appropriately the curl and div operators as well as
(1 + Γ∂t) with the result

(1 + Γ∂t)

(
1

P
∇2w −Ra∇2

⊥(θ +M1[θ − ∂zφ])

)
= (1 + ΛΓ∂t)∇2

(
(2υ1∇z + [1 + υ2 + υ1z]∇2)w

)
(14)

The remaining variables relevant for the linear anal-
ysis can be written as a vector field u = (θ, φ, w)T .
Using standard techniques [19], the spatial and tem-
poral dependencies of u are separated using a normal
mode expansion

u(r, t) = U(z) exp[ik · r⊥ + st], (15)

with U(z) = (Θ(z),Φ(z),W (z))T and k being the
horizontal wave vector of the perturbations, r⊥ the
horizontal position vector, and s = σ + iΩ the com-
plex eigenvalue. The latter contains the linear growth
rate, σ, and the frequency, Ω, of the perturbation.
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With this ansatz Eqs. (10), (11), (14) are reduced to
a set of coupled ordinary differential equations

D2Θ = (k2 + s)Θ−W (16)
D2Φ = M3k

2Φ +DΘ (17)

LF(D2 − k2)2W −
(sQ
P
− 4υ1D

)
(D2 − k2)W

= k2QRa ([M1 + 1] Θ−M1DΦ)

(18)

where D denotes the spatial differentiation d/dz of
the functions U . The abbreviationQ = (1+sΓ)/(1+
sΛΓ) contains the influence of viscoelasticity and is
equal to one in the Newtonian case. The magnetic
field dependence of the viscosity shows up in Eq.(18)
in the contribution LF ≡ 1 + υ2 + υ1z with the non-
autonomous term ∼ υ1 and the constant ∼ υ2. The
evaluation of their influence is the main target of this
manuscript.

The differential equations have to be amended by
boundary conditions that read for viscous as well as
viscoelastic fluids

W = DW = Θ = 0, (19)

at the two horizontal rigid boundaries. In addition, in
the case of a finite magnetic permeability χb of the
rigid boundaries, the scalar magnetic potential must
satisfy

(1 + χb)DΦ± kΦ = 0, (20)

at z = ±d/2, respectively [3]. Note that only in the
limit when χb tends to infinity, Eq. (20) simplifies to
DΦ = 0. The numerical results below are obtained
for χb = 1.

In order to solve Eqs. (16)-(18) with these real-
istic boundary conditions, we use a spectral colloca-
tion method. Spectral methods ensure an exponential
convergence to the solution and are the best avail-
able numerical techniques for solving simple eigen-
value – eigenfunction problems. Here, we follow the
technique of collocation points on a Chebyschev grid
as described in [20]. The collocation points (Gauss-
Lobato) are located at height zj = cos(jπ/N) where
the index j runs from j = 0 to j = N . Note
that here the z-variable ranges from −1 to +1 and
one has therefore to rescale Eqs. (16)-(18) accord-
ingly, because the physical domain is defined in the

range (−1/2,+1/2). We use N = 14 collocation
points in the vertical direction, for which the equa-
tions and the boundary conditions are expressed. We
have checked that using N = 20 collocation points
only modifies the fourth or fifth significant digit of
the result. By using the collocation method, the set of
differential equations (16)-(18) is transformed into a
set of linear algebraic equations. The eigenfunctions
(Θ(z),Φ(z),W (z)) are transformed into eigenvec-
tors defined at the collocation points. The Rayleigh
number Ra is again used as the eigenvalue of the
problem. After this stage of discretization, one is left
with a classical generalized eigenvalue–eigenvector
problem that can easily be solved using the Matlab
routine "eig" [21].

It is well-known that Newtonian magnetic fluids
of the kind considered here only show a stationary
instability. This instability is not at all influenced by
visco-elasticity. However, visco-elasticity allows for
an oscillatory instability, on which we concentrate in
the following. Since the eigenvalue problem is com-
plex, one has to make sure that Ra (as being a phys-
ical quantity) is a real number by choosing a cor-
rect value for Ω. Therefore, one is left with a triplet
{Ra, k,Ω} that defines the marginal stability condi-
tion (for a given value of the horizontal wavenumber
k). This procedure is repeated for several values of k
leading to the marginal stability curve Ra versus k.
The minimum of this curve defines the critical Raoc
and kc, and the corresponding value for the critical
frequency Ωc.

3.2. Discussion of Results
In Fig. 1 we discuss the influence of a magnetic

field on the critical properties of the oscillatory in-
stability. The latter is obtained by choosing the vis-
coelastic parameters (Λ = 0.5, Γ = 0.1), appropri-
ately. For low fields there is no influence. For higher
fields the threshold Raoc decreases with increasing
field strength, if no magneto-viscous effect is present
(η = 0). In that case a magnetic field only acts on the
system via the static Kelvin force. It is known that
in this case the quiescent ground state is destabilized
andRaoc is reduced. Obviously, the magneto-viscous
effect has an opposite influence, since increasing the
viscosity stabilizes the quiescent ground state. For
intermediate values of η the competition
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Figure 1: The critical properties of the oscillatory instability,
Raoc, kc, and Ωc, as a function of an external magnetic field,
H0, for different values of the magneto-viscous coefficient η.
The fixed parameters are: Γ = 0.1, Λ = 0.5, P = 10, d =
1 mm, µ0 = 4π× 10−7 N/A2, ρ = 1000 kg/m3, g0 = 9.8 m/s2,
αT = 10−3 1/K, χ0 = 1.9, χb = 1, χH = 10−8m2/A2, and
χT = 5× 10−2 1/K.
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as a function of the magneto-viscous coefficient η at H0 =
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angles). The other fixed parameters are the same of Fig. 1.
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Figure 3: The critical properties Rac, kc, and Ωc as a function
of the relaxation ratio Λ for different values of the magneto-
viscous coefficient η at H0 = 5 × 103A/m. The other fixed
parameters are the same of Fig. 1. The hollow (filled) symbols
correspond to the stationary (oscillatory) case.

10
−2

10
−1

10
0

10
1

0

500

1000

1500

2000

2500

Γ

R
a

o
c

 

 

η=0 m
2
/A

2

η=5x10
−9

 m
2
/A

2

η=2x10
−8

 m
2
/A

2

η=6x10
−8

 m
2
/A

2

10
−2

10
−1

10
0

10
1

0

2

4

6

8

10

Γ

Ω
c

 

 

η=0 m
2
/A

2

η=5x10
−9

 m
2
/A

2

η=2x10
−8

 m
2
/A

2

η=6x10
−8

 m
2
/A

2

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

Γ

k
c

 

 

η=0 m
2
/A

2

η=5x10
−9

 m
2
/A

2

η=2x10
−8

 m
2
/A

2

η=6x10
−8

 m
2
/A

2

Figure 4: The critical properties Rac, kc, and Ωc as a function
of the Deborah number Γ for different values of the magneto-
viscous coefficient η at H0 = 5 × 103A/m. The other fixed
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of these two effects leads to a non-monotonous
behavior of Raoc, while for larger η the threshold in-
creases (there is a saturation not shown here). For the
critical frequency Ωc the influence of the magneto-
viscous effect is less pronounced, since even without
the latter Ωc increases with the field strength. There
is only a very small influence of η on the critical
wavenumber kc.

A rather similar scenario is found, when the crit-
ical properties of the oscillatory instability are dis-
cussed as a function of the magneto-viscous effect,
as it is shown in Fig. 2. Choosing a value for the ex-
ternal field (H0 = 5 kA/m) large enough to be of
influence, but still small enough for Eq. (4) to be ap-
plicable,Raoc (Ωc) sharply (rather slightly) increases
for large η, while kc is almost unaffected by η. This
is shown for viscoelastic parameters typical for the
oscillatory instability (Γ = 0.1, Λ = 0.25 and 0.5).

In Figs. 3 and 4 we show the influence of η on the
transition from the stationary to the oscillatory insta-
bility that is obtained by varying the viscoelastic pa-
rameters Λ and Γ. In the former case lower (larger)
values of Λ (with Γ = 0.1 fixed) lead to the oscil-
latory (stationary) instability. Although the critical
Rayleigh numbers increase for both instability types
with increasing magneto-viscous effect, the value of
Λ, where the cross-over takes place, is unaffected by
η. Again, there is only a slight effect on Ωc and al-
most no effect on kc due to η. The same scenario is
found in Fig. 4, where Γ is varied (and Λ = 0.5 fixed)
with the difference that the stationary (oscillatory)
instability is obtained for smaller (larger) values of
Γ. In both cases H0 = 5 kA/m.

For specific values of the parameters, the crit-
ical Rayleigh values of the two instabilities, Rasc
and Raoc, respectively, can coincide leading to a
codimension-2 point. An example is shown in Fig. 5,
where we have fine-tuned the value of Λ = 0.56515
(Γ = 0.1) in order to get coincidence of the crit-
ical Rayleigh numbers. In this particular case we
get Raoc = Rasc = 2341.78, koc = 3.977, ksc =
3.424 and Ωc = 3.9798. Once we have obtained a
codimension-2 point, we can follow this point in pa-
rameter space to get a line of codimension-2 points.
Two codimension-2 lines are displayed in Fig. 6 cor-
responding to two different values of the external
magnetic field, H0 = 103A/m and 5 × 103A/m, re-
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Figure 5: Example of a codimension-2 point obtained for the
special parameter values η = 6 × 10−8 m2/A2, H0 = 5 ×
103A/m, Γ = 0.1, and Λ = 0.56515. Other parameters are as
in Fig. 1.
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Figure 6: Representation of the codimension-2 curve in the (Λ,
Γ) plane for two different values of the magnetic field H0 =
103A/m and H0 = 5× 103A/m at η = 6× 10−8 m2/A2. Other
parameters are as in Fig. 1.

spectively. These lines in the (Λ, Γ) plane indicate
the location of codimension-2 points. In addition, we
shown in Fig. 7 the corresponding critical properties
associated with these codimension-2 points. It is in-
teresting to note that in Fig. 7 the critical Rayleigh
values only depend on the external magnetic field,
but not on Λ, as we move along the codimension-2
curve.

4. Final Remarks

In soft matter science the direct measurement
of the various material parameters of complex flu-
ids is sometimes rather involved. Alternatively, one
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the codimension-2 curves of Fig. 6 are shown as a function of
Λ. The corresponding values of Γ follow from Fig. 6.

can look how a special material parameter influences
the instability scenario, when the material is driven
out of equilibrium. As an example we have shown
here that the magneto-viscous parameter η describ-
ing the magnetic field dependence of the shear vis-
cosity has a prominent influence on the onset of os-
cillatory instability in visco-elastic ferrofluids. For
a large enough values of η the threshold increases
with the external magnetic field, while for η small
or zero the external field decreases the onset. In the
latter case the static Kelvin force exclusively carries
the field influence, while a finite η leads to an addi-
tional field influence in the dissipative dynamics. For
intermediate η values a non-monotonous field depen-
dence is found for the threshold. These results are
obtained within linear stability analysis.

In the context of nonlinear dynamics the
magneto-viscous effect is non-Boussinesq giving
rise to a non-autonomous stability problem and to the
breaking of spatial up-down symmetry. As a conse-
quence, one can expect non-trivial pattern selection
and switching between different patterns (e.g. roll
and hexagonal convection) by varying the external
magnetic field. This requires, however, a nonlinear
stability analysis including a nonlinear modeling of
the visco-elasticity [6].

Another extension of the present work could take
into account the field dependence of the visco-elastic
parameters, like the elastic plateau modulus K1 and
the strain relaxation λ1. The former is expected to
increase with the field, since internal transient elas-

tic structures are enhanced by the field. While the
shear viscosity η increases under a (static) magnetic
field, since (in the simplest model) the field hin-
ders the mutual rotation of the magnetic particles,
a priori predictions for the field dependence of λ1
are not possible. Such a scenario is important for
magneto-rheological systems, where, however, addi-
tional qualitatively new effects, like yield stress and
thixotropy, are to be considered.
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