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ABSTRACT

In this manuscript we report theoret-
ical and numerical results on the convec-
tion of a magnetic fluid with a viscoelas-
tic carrier liquid. The viscoelastic proper-
ties are given by the linear Oldroyd model
or equivalently by linear relaxing elastic-
ity. We take the lower interface to be rigid,
whereas the upper, free one is assumed to
be non-deformable and flat. At that in-
terface the surface tension varies linearly
with the temperature. Using a spectral
method we calculate numerically the con-
vective thresholds for both, stationary and
oscillatory bifurcation. The effects of vis-
coelasticity and of a magnetic field on the
instability thresholds are emphasized.

INTRODUCTION

Ferrofluids are magnetic fluids formed
by a stable colloidal suspension of mag-
netic nanoparticles dispersed in a carrier
liquid. Without an applied external mag-
netic field the orientations of the magnetic
moments of the particles are random re-
sulting in a vanishing macroscopic magne-
tization. An external magnetic field, how-
ever, easily orients the particles’ magnetic
moments and a large (induced) magneti-
zation is obtained. There are two main
features that distinguish ferrofluids from
ordinary fluids, the polarization force and
the body couple1. In addition, when a
magnetic field is applied, the ferrofluid
can exhibit additional rheological proper-
ties such as magneto-viscosity, adhesion
properties, and non-Newtonian behavior,

among others2. In the last decades much
efforts have been dedicated to the study of
convection mechanisms in ferrofluids. In
addition, heat transfer through magnetic
fluids, in particular, has been one of the
leading areas of scientific study due to its
technological applications3.

The first continuum description of mag-
netic fluids was given by Neuringer and
Rosensweig4. Later, Finlayson 5 studied
the convective instability of a magnetic
fluid for a fluid layer heated from below
in the presence of a uniform vertical mag-
netic field. He discussed the cases of both,
shear free and rigid horizontal boundaries
within the linear stability method. Ryskin
and Pleiner6, using nonequilibrium ther-
modynamics, have derived a complete set
of equations to describe ferrofluids in an
external magnetic field. Recently, the ther-
mal convection in viscoelastic magnetic
fluids was studied for idealized and rigid
boundary conditions7,8.

On the other hand, the Marangoni in-
stability is a good example of a surface
tension driven instability. If a tempera-
ture gradient is applied to a layer of a
fluid with a free surface, the heat conduct-
ing state becomes unstable, and convection
starts above a critical temperature gradi-
ent, when the heating is done from below.
The linear analysis of the convection in a
magnetic fluid with deformable free surface
was studied by Weilepp and Brand9 and by
Hennenberg et al.10. The linear and weakly
nonlinear analysis in the case of viscoelas-
tic pure fluids was performed for a non-
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deformable free surface by Lebon et al.11,12.
The eigenvalues and eigenfunctions of the
adjoint problem and adjoint boundary con-
ditions for the case of a deformable free sur-
face for the Marangoni problem have been
derived only recently13.

The purpose of the present work is to
analyze the influence of the viscoelasticity
on Bénard-Marangoni convective thresh-
olds in a magnetic fluid; in particular,
where the separation ratio and magnetic
separation ratio are not too large, the sim-
ple fluid approximation can be used6. To
this aim an Oldroyd viscoelastic magnetic
fluid heated from below is considered. The
description of the system involves many
parameters whose values have not yet been
determined accurately. Therefore, we are
left with some freedom in fixing the pa-
rameter values. Since the boundary condi-
tions are complicated, we numerically solve
the linearized system using a collocation
spectral method in order to determine the
eigenfunctions and eigenvalues and conse-
quently the convective thresholds. The pa-
per is organized as follows: In the following
section the basic hydrodynamic equations
for viscoelastic magnetic fluid convection
are presented, followed by the linear sta-
bility analysis, and, finally, conclusions are
presented.

THEORETICAL MODEL

Let us consider a layer of thickness d of
an incompressible, magnetic fluid in a vis-
coelastic carrier liquid, with very large hor-
izontal extension (in the xy-plane) in the
vertical gravitational field g and subject
to a vertical temperature gradient. The
magnetic fluid properties can be modeled
as of electrically nonconducting superpara-
magnets. The magnetic field H is assumed
to be parallel to the z axis, H = H0 ẑ.
It would be homogeneous, if the magnetic
fluid were absent. Let us choose the z-
axis such that g = −g ẑ and that the layer
has its interfaces at coordinates z = −d/2
and z = d/2. A static temperature dif-

ference across the layer is imposed, T (z =
−d/2) = T0 +4T and T (z = d/2) = T0.
We impose the lower interface to be rigid
and the upper one free. The latter one
is assumed to be non-deformable and flat,
which is a reasonable approximation for
very small capillarity numbers11,12. At the
upper, free interface, the surface tension Σ
is taken to vary linearly with the temper-
ature. Under the Boussinesq approxima-
tion, the dimensionless linear perturbation
equations read8,13

∇·v = 0 (1)

P−1∂tv+∇p =∇ · τ+RaΠ1(θ, φ)ẑ (2)

∂tUij = Dij − Γ−1
1 Uij (3)

∂t(θ −M4∂zφ) = (1−M4)w +∇2θ (4)

(∂zz +M3[∂xx + ∂yy])φ− ∂zθ = 0 (5)

∇2φext = 0 (6)

with the dimensionless linearized viscoelas-
tic stress tensor τ ij = −E1Uij−Dij, where
p is the static hydrodynamic pressure and
Dij = 1

2
(∇ivj+∇jvi) is the so-called strain-

rate tensor. The driving of the system is
described by Π1(θ, φ) = (1+M1)θ− (M1−
M5)∂zφ.

The variables are {v, Uij, θ, φ}, the di-
mensionless velocity perturbation, the di-
mensionless strain tensor, the temperature
perturbation and the dimensionless mag-
netic potential perturbation, respectively.
In Eqs. (1) - (6), the following groups of
dimensionless numbers have been intro-
duced: (a) (pure fluids) The Rayleigh
number, Ra = αTgβd

4/κν, accounting for
buoyancy effects; and the Prandtl num-
ber, P = ν/κ, relating viscous and ther-
mal diffusion time scales. (b) (magnetic
fluid) The strength of the magnetic Kelvin
force relative to buoyancy is measured by
the parameter M1 = (βχ2

T/ρ0gαT )H2
0/(1 +

χ); the nonlinearity of the magnetiza-
tion, M3 = 1 − (χHH

2
0 )/(1 + χ), a mea-

sure of the deviation of the magnetiza-
tion curve from the linear behavior M0 =
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χ0H0; the relative strength of the temper-
ature dependence of the magnetic suscep-
tibility M4 = (χ2

T/cH)H2
0T0/(1 + χ); and

the ratio of magnetic variation of density
with respect to thermal buoyancy M5 =
(αH/αT )χTH

2
0/(1 + χ). (c)(viscoelastic

fluid) The elastic modulus E1 = K1d
2/νκ

and the strain relaxation Γ1 = νκτ1/d
2.

In these dimensionless numbers differ-
ent physical quantities appear such as ρ0

the reference mass density, cH the specific
heat capacity at constant volume and mag-
netic field, T0 the reference temperature,
H0 the reference magnetic field, χT the py-
romagnetic coefficient, κ the thermal dif-
fusivity, χH the longitudinal magnetic sus-
ceptibility, αT the thermal expansion co-
efficients and αH the magnetic expansion
coefficients, ν the static viscosity, τ1 the
strain relaxation time, K1 is the plateau
elastic modulus, and β = 4T/d.

Instead of the linear viscoelastic equa-
tion in the form of a relaxing strain tensor,
Eq.(3), often a heuristic constitutive equa-
tion, the linear Oldroyd model, is used

(1 + Γ∂t)τ = (1 + Λ∂t)Dij (7)

containing the Deborah number, Γ =
λ1κ/d

2, with λ1 the stress relaxation time,
and the retardation number, Λ = λ2/λ1,
the ratio between the strain rate relax-
ation, λ2, and λ1. Within the linear do-
main both descriptions are equivalent with
Γ = Γ1 and Λ = (1 + E1Γ1)−1, revealing
however that Λ is restricted by 0 < Λ < 1.
The static viscosity ν, used to scale the
time in the viscoelastic description, is re-
lated to the asymptotic viscosity ν∞ (used
in the Oldroyd case) by ν∞ = ν/Λ The
main advantage of the use of the explicit
viscoelasticity, Eq.(3), is that it can easily
be generalized in a straightforward physi-
cal manner into the nonlinear domain. In
addition, for complex liquids that need the
introduction of additional degrees of free-
dom the combination of the strain ten-
sor dynamic equation with those addi-
tional degrees of freedom follows standard

thermodynamic and hydrodynamic proce-
dures, while the heuristic generalization of
the constitutive equation reaches its lim-
its, rapidly. Furthermore, realistic bound-
ary conditions are straightforward for the
strain field, but not at all if the stress is
used as variable. A critical comparison be-
tween the two approaches at the quadratic
nonlinear level is given in Ref. 14. Since
we will discuss only linear properties, we
will use both descriptions in parallel.

Let us comment on the numerical val-
ues of the parameters; the Rayleigh num-
ber Ra can be changed by several orders of
magnitude by varying the applied temper-
ature gradient, with Ra ∼ 102 − 103 rele-
vant in the present case. A typical value
for P in viscoelastic fluids is P ∼ 100−103

with Pr ∼ 10 for aqueous systems. The
magnetic numbers are field dependent with
M1 ∼ 10−4−10,M3 & 1,M4 ∼M5 ∼ 10−6

for typical magnetic field strengths.6,7,8 M1

is directly proportional to H2
0 , while M3 is

only a weak function of the external mag-
netic field. Since M4 and M5 are very
small and not related to viscoelastic effects,
which we are interested in here, we expect
not to loose any reasonable aspect of the
problem under consideration by putting
them to zero. Kolodner15 and the group of
Chu16,17,18 have suggested that for aqueous
suspensions the Deborah number is about
Γ ∼ 10−3−10−1, but for other kinds of vis-
coelastic fluids the Deborah number can be
of the order of Γ ∼ 103. Unfortunately, no
experimental data are available for the re-
tardation number nor for the stress relax-
ation time, so we take Λ = 2, where fixed.

LINEAR STABILITY ANALYSIS

In order to investigate the linear sta-
bility of the quiescent ground state under
increasing Rayleigh and M1 numbers, we
first eliminate the effective pressure and
two components of the velocity field by ap-
plying the curl (∇ × ...) and double curl
(∇ ×∇ × ...) on the Navier-Stokes equa-
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tion and then considering only w, the z-
component of tvelocity. After some alge-
bra, the linear equations read

P−1∂t∇2w = ∇2(∇ · τ )z +Ra∇2
⊥LΣ (8)

(1 + Γ∂t)(∇ · τ )z = (1 + ΓΛ∂t)∇2w (9)

∂tθ = w +∇2θ (10)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 (11)

with LΣ = (1+M1)θ−M1∂zφ. We remark
that Eqs. (8) and (9) can be combined in
order to eliminate the stress tensor (or the
strain tensor) resulting in a single equation
for w. Defining a vector field u = (θ, φ, w)T

that contains the important variables for
the linear analysis, the spatial and tempo-
ral dependencies of u are separated using
a normal mode expansion

u(r, t) = Ū(z) exp[ik·r⊥ + s t], (12)

with Ū = (Θ,Φ,W )T , and where k is
the horizontal wavenumber of the pertur-
bations, r⊥ is the horizontal position vector
and s = σ+ iΩ denotes the complex eigen-
values with σ the linear growth rate of a
periodic perturbation and Ω its frequency.
Using the ansatz (12), Eqs. (8) - (11) are
reduced to the following coupled ordinary
differential equations

D2Θ = (k2 + s)Θ−W (13)

D2Φ = M3k
2Φ +DΘ (14)

D4W = ξ1D
2W−ξ2W+ξ3Θ−ξ4DΦ (15)

where Dnf = ∂nz f , ξ1 = 2k2 + sQ/P , ξ2 =

k2(k2+sQ/P ), ξ3 = Rak2 (1 +M1)Q, and
ξ4 = Rak2M1Q with Q = (1 + sΓ)/(1 +
sΛΓ).

The correct fluid and thermal bound-
ary conditions19 for a viscous or viscoelas-
tic fluid are, at the lower rigid surface
(z = −1/2)

W = DW = 0

Θ = 0,
(16)

and at the upper free surface (z = +1/2)

W = D2W +
k2Ma

Q
Θ = 0

(D +Bi) Θ = 0,

(17)

where Ma = γTβd
2/κν is the Marangoni

number, which arises from the variation of
the surface tension Σ with temperature at
free surface, Σ = Σ0 − γTβd, where γT is
commonly a positive constant. In addi-
tion, the Biot number, Bi = hd/ε arises
from the heat transfer (cooling) at the up-
per boundary according to Newton’s law,
with ε = κcH the heat conductivity of the
liquid and h the heat transfer coefficient.
For a perfectly heat conducting surface Bi
tends to infinity, while for an adiabatically
insulating boundary it goes to zero.

On the other hand, in the case of a finite
magnetic permeability χb of the bound-
aries, the scalar magnetic potential must
satisfy the following dimensionless bound-
ary conditions5

(1 + χb)(DΦ−Θ)± kΦ = 0, (18)

at z = ±1/2. The occurrence of tempera-
ture variations in the magnetic boundary
condition at the free boundary (at z =
−1/2 there is Θ = 0) is specific for the
combination of surface and magnetic ef-
fects. The effective surface susceptibility
χb = χ− (1+χ)(M3−1) is slightly smaller
than the linear one. Note that in the limit
when χb tends to infinity, Eqs. (18) gives
DΦ = Θ, which is often used as a simpli-
fied boundary condition.

The Marangoni instability is a capil-
lary surface effect and driven by the ap-
plied temperature difference that shows up
in Ma, in contrast to the Bénard instabil-
ity that is a bulk instability driven by the
applied temperature difference that shows
up in Ra. Since Ra and Ma both de-
pend on the applied temperature differ-
ence, it is better to define two new pa-
rameters, η (rate of heating) and α (grav-
ity parameter), defined via Ra = ηαRa0

and Ma = (1− α)ηMa0. Here, Ra0 = 669
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andMa0 = 79.607 are the critical Rayleigh
number obtained in the absence of capil-
larity for Newtonian fluids and the criti-
cal Marangoni number obtained in the ab-
sence of gravity for Newtonian fluids with
an adiabatically isolated upper surface, re-
spectively. The rate of heating η is pro-
portional to the applied temperature gra-
dient and acts as control parameter, while
α measures the ratio between the gravity
and the capillarity effect12, as can be seen
from the inverse relations

η =
Ra

Ra0

+
Ma

Ma0

(19)

and

α =
RaMa0

MaRa0 +RaMa0

. (20)

In particular, the case α = 0 corresponds
to a pure capillary effect (Ra = 0), while
the case α = 1 describes a pure gravity
effect (Ma = 0). In the following, we will
calculate, for some fixed values of α, the
critical value ηc of η, where the instability
sets in.

In order to solve Eqs. (13) - (15) with
these realistic boundary conditions, we
use a spectral collocation method. Spec-
tral methods ensure an exponential conver-
gence to the solution and are the best avail-
able numerical techniques for solving sim-
ple eigenvalue – eigenfunction problems.
Here, we follow the technique of collocation
points on a Chebyschev grid as described
by Threfethen.20 The collocation points
(Gauss−Lobato) are located at height zj =
cos(jπ/N) where the index j runs from j =
0 to j = N . Note that here the z-variable
ranges from −1 to +1 and one has there-
fore to rescale Eqs. (13) - (15) accordingly,
because the physical domain is defined in
the range [−1/2,+1/2]. We use N = 20
collocation points in the vertical direction,
for which the equations and the bound-
ary conditions are expressed. More collo-
cation points only modify the sixth signifi-
cant digit of the result. By using the collo-
cation method, the set of differential equa-
tions (13) - (15) is transformed into a set of
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Figure 1: ηc (top) and Ωc (bottom) as a function
of M1 for different values of Γ at α = 0.25. The
different curves belong to different Deborah num-
bers (red squares = 0.1, green dots = 0.3, purple
triangles = 0.5, brown stars = 0.7). The other
fixed parameters are Pr = 10, Λ = 0.5, M3 = 1.1,
Bi = 10−6, and χb = 1.

linear algebraic equations. The eigenfunc-
tions {Θ(z),Φ(z),W (z)} are transformed
into eigenvectors defined at the colloca-
tion points. After this stage of discretiza-
tion, one is left with a classical generalized
eigenvalue–eigenvector problem.

In the case of the oscillatory instabil-
ity considered here, choosing a fixed value
of the horizontal wavenumber k, one looks
for a marginally stable solution of η (with
Σ = 0) making sure that η and Ω are real
quantities. This procedure is repeated for
several values of k leading to the marginal
stability curve η versus k. The minimum
of this curve gives ηc and kc, and the cor-
responding value of Ω is the critical fre-
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Figure 2: ηc (top) and Ωc (bottom) as a function
ofM1 for different values of Γ at α = 1. The other
fixed parameters are the same of Figure 1.

quency Ωc.
The main results are given in Figs. 1

to 3. In all cases the critical heating rate,
ηc, and its corresponding frequency, Ωc, are
displayed as a function of different sets of
control and material parameters. In par-
ticular, we concentrate the discussion on
the influence of the magnetic and viscoelas-
tic properties on those quantities. Fig-
ure 1 and 2 show ηc and Ωc as a func-
tion of the magnetic number M1 ∼ H2

0

for four different Deborah numbers. In
Fig. 1 the Marangoni aspect is manifest
(α = 0.25), while in Fig. 2 the pure Bé-
nard case (α = 1) is shown for compari-
son. In both cases we find that the mag-
netic field destabilizes the system, since the
critical value of the threshold, ηc, decreases
when M1 increases. In the first case, with
α = 0.25, the decrease is a rather mod-
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Figure 3: ηc (top) and Ωc (bottom) as a function
of E1 for different values of α (red squares = 0,
green dots = 0.3, purple triangles = 0.5, brown
stars = 1) . The fixed parameters are Pr = 10,
Γ = 100, M1 = 10, M3 = 1.1, Bi = 10−6, and
χb = 1.

erate when compared to the the pure Bé-
nard case (α = 1). In both cases, how-
ever, the threshold is independent of the
Deborah number Γ. On the other hand,
the critical frequency is a non-monotonous
function of the magnetic field with a shal-
low minimum at a certain value of M1 for
the Marangoni case (Fig. 1). This feature
vanishes completely for α→ 1, where Ωc is
constant with respect toM1, as is shown in
Fig. 2. The constant value of Ωc, however,
depends strongly on the Deborah number
for both cases, and decreases for increas-
ing Γ. This simply reflects the expectation
that a slower relaxation of the elasticity en-
hances the internal time scale for the crit-
ical perturbations. (Note that for fixed Λ
an increasing Γ means a decreasing E1).

228



Finally, we remark that, for this range of
parameters, the influence of the other mag-
netic number, M3 is irrelevant, because ηc
and Ωc change less than 0.05%.
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Figure 4: The critical wavenumber kc as a function
of E1 for different values of α (as in Fig. 3). The
fixed parameters are as in Fig. 3

Figure 3 shows ηc and Ωc as a func-
tion of the elastic modulus E1 for differ-
ent values of the gravity parameter α. Ob-
viously, when increasing the elastic mod-
ulus, there is a (hard mode) transition
from the stationary instability to an oscil-
latory one, with a finite critical frequency
at the transition. Such a transition has to
be expected, since for a Newtonian fluid
(E1 → 0) only the stationary instabil-
ity is possible, while in the elastic case
(E1 large) convection cannot be station-
ary, but only oscillatory. This transition
occurs at a smaller elastic modulus in the
Marangoni case than in the Bénard one.
In addition, we observe that in the oscilla-
tory regime the frequency is a non-smooth
function of Λ, a known phenomenon in
viscoelastic fluids with complex boundary
conditions.12,21,22 It is directly related to
jumps in the critical wavenumber kc (Fig.
4). At the transition the horizontal width
of the spatial patterns (e.g. convection
rolls) decreases and reaches again the sta-
tionary value in a few steps when increas-
ing E1. Above that, Ωc is a smooth increas-
ing function of E1 as one expects from an

almost elastic medium. (The time scale of
the oscillations is much smaller than the
relaxation time of the elasticity). Finally,
let us comment that this phase transition
is robust against changes of the Deborah
number within a wide range. The criti-
cal heating rate is independent of the elas-
tic properties for the stationary instability,
but decreases in the oscillatory one rather
rapidly with increasing elasticity.

CONCLUSIONS

In the present work, Bénard-Marangoni
convection in a magnetic viscoelastic liq-
uid is studied. The stability thresholds
have numerically been determined by the
spectral method. The technique of colloca-
tion points (Gauss−Lobato) as described
by Threfethen20 was used. Due to the
presence of various destabilizing effects, i.e.
buoyancy and magnetic forces, and of addi-
tional relaxation channels due to the linear
viscoelasticity, the discussion of the stabil-
ity curves becomes rather intricate. We
found that a magnetic field destabilizes the
system in the Marangoni case less than
in the Bénard one, while the critical fre-
quency depends strongly on the Deborah
number in both cases. The critical thresh-
olds are independent of the Deborah num-
ber. As a function of the elastic modu-
lus the oscillatory instability, whose criti-
cal frequency is non-smooth, is competing
with the stationary one. Let us finally com-
ment that, very often ferrofluids show a fi-
nite separation ratio and a finite magnetic
separation ratio and, therefore, require a
binary mixture description. However, for
materials, where the separation ratio and
magnetic separation ratio are not too large,
the simple fluid approximation is valid6.
The present work is based on this last ap-
proximation. A detailed study on the oscil-
latory bifurcation for magnetic binary mix-
tures is still in progress.
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