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Abstract

Nonlinear hydrodynamic equations for polymeric fluids with permanent
or transient orientational order are discussed. We start from a description
that utilizes the well-known nematohydrodynamic equations for low molecu-
lar weight uniaxial nematics. We concentrate on the reversible nonlinearities
in the dynamic equation for the orientational tensor order parameter. The
non-phenomenological part is unambiguously of the ’corotationally convected’
or "Jaumann’ type. This holds also for the case of transient orientational or-
der, which occurs in semi-flexible or rigid polymeric systems in the isotropic
phase. The phenomenological part of the (nonlinear) reversible dynamics (flow
alignment) is different for the isotropic and uniaxial case (the biaxial case is
discussed in an Appendix). The corresponding form of the stress tensor is dis-
cussed. A comparison with existing phenomenological and mesoscopic models
is given.
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1 Introduction and Results

The hydrodynamic description of low-molecular-weight nematic liquid crystals is well es-
tablished. It has been derived (Martin et al. 1972) from the fact that the existence of



a mean orientation of the molecules ('director’) spontaneously breaks rotational symme-
try. Rotations of this director constitute hydrodynamic variables, i.e. they give rise to
modes with vanishing frequency in the homogeneous limit. These Goldstone modes come
in addition to the usual hydrodynamic excitations of simple fluids, which are based on
conservation laws. All other variables are assumed to have already relaxed to their equi-
librium states. Only under special circumstances a few of those 'microscopic’ variables,
e.g. the degree of orientational order (a scalar quantity) near the phase transition, may
become slow enough to be relevant on the hydrodynamic time scale. A somewhat dif-
ferent approach (’Leslie-Ericksen’) to nematodynamics is based on the rotational particle
dynamics in an incompressible continuum. In the relevant limit of vanishing moments of
inertia of the particles (or equivalently of fast relaxing angular velocity) this description is
equivalent to (incompressible) hydrodynamics (de Gennes and Prost 1993). Characteris-
tic for this approach is the fact that the reversible part of the director dynamics, which is
responsible for flow alignment or tumbling, arises as the ratio between the dissipative part
of the dynamics of the rotation angle with that of the angular velocity. This detour via
an additional dynamic equation (for the angular momentum in the present case), which is
then adiabatically eliminated, is also necessary for Poisson-bracket based descriptions of
nematics, cf. Dzyaloshinskii and Volovik (1980) and more generally Grmela (1984, 1985a,
1986).

Nematic-like degrees of freedom are not only relevant for true thermodynamic nematic
phases, but also play a role for isotropic phases close to the transition temperature. Here,
localized patches of nematic order are rather long-lived, i.e. the nematic degree of order is
only slowly relaxing (to zero, its equilibrium value). To describe these nematic fluctuations
a second rank tensor, the full nematic order parameter tensor (de Gennes and Prost 1993)
is required, since there is no director in the isotropic phase and the scalar quantity by itself
cannot describe the orientation of the transient patches. Of course, also in the nematic
phase, one can use a dynamic equation for the 2nd-rank tensor order parameter (Hess
1975a, 1975b), which then contains the (hydrodynamic) dynamics of the director and the
relaxing dynamics of the scalar degree of nematic order.

In polymeric systems, besides the orientational degrees of freedom, there are also
elastic degrees of freedom, responsible for the viscoelastic effects. In side-chain poly-
mers these two aspects are clearly separated, since the nematic-like behavior refers to
the mesogenic side-chains, while (visco-)elasticity is related to the backbone chain. A
linearized hydrodynamic description, with both nematic and elastic degrees of freedom,
has been given some time ago (Pleiner and Brand 1991, 1992). For main chain systems
there is a much closer connection between orientational and elastic aspects, since both
are connected with the polymeric chain. In the following we will concentrate on the ori-
entational degrees of freedom and disregard the elastic aspects. Our goal is to derive
nonlinear macroscopic dynamic equations for the nematic-like degrees of freedom using
symmetry, hydrodynamic and thermodynamic arguments. The latter include the split-
ting of the currents into reversible and irreversible parts, which lead to zero and positive
entropy production, respectively and which severely restricts the nature and form of the
currents. Emphasis is laid on the reversible nonlinearities, some of which do not come
with possibly small material-dependent parameters, but are either geometric in nature
or determined by the proper transformation behavior of the macroscopic variables under
Galilei transformations, rigid rotations etc..

In Sec. 2 we summarize the director hydrodynamics in an nematic phase and combine



this with the relaxing dynamics of the scalar degree of order into an effective dynamic
equation for the 2nd rank order parameter tensor (including an external field). The
nonlinear convective terms are definitely of the Jaumann type describing the coupling
to rotational flow, but there are in addition, and of equal importance, phenomenological
(linear and nonlinear) couplings to symmetric velocity gradients, i.e. elongational flow
along certain directions. These coupling terms, however, have a very definite structure
due to the underlying director hydrodynamics.

In Sec. 3 we discuss the form of the dynamic equations for orientational fluctuations
in the isotropic phase of semi-flexible or stiff polymers. Here no director exists and the
dynamics is immediately expressed for the tensor order parameter. Again Jaumann-type
convective nonlinearities are present, however the phenomenological part of the dynamics
is rather different from that in the nematic phase and it is not possible to use the same set
of equations for the orientational dynamics in the nematic and the isotropic phase. This
hydrodynamic description is different from a (dynamic) Ginzburg-Landau description,
which starts from a common energy density functional for the ordered (nematic) and the
disordered (isotropic) phase. For the ordered phase the Ginzburg-Landau treatment is
valid for very small order parameter, only (close to the phase transition, at best), and does
not lead to the full hydrodynamic equations, neither in the statics nor in the dynamics.

In Sec. 4 we give the form of the appropriate stress tensors. Being the current of
the momentum density, the stress tensor not only contains isotropic pressure and viscous
stresses, but also orientational-elastic stresses, which result from the orientational degrees
of freedom. Technically these stresses are the counter terms to the reversible parts of the
orientation dynamics ensuring zero entropy production. They are completely fixed by the
orientation dynamics and no choices are left. Thus, there are again different expressions
for the isotropic and the nematic phase. In particular, a simple stress-optical law, i.e. the
stress tensor being proportional to the tensor order parameter, is valid for the isotropic
phase only — and only in linear approximation. We show also that the gradient-free part
of the stress tensor is manifestly symmetric.

In Sec. 5 we compare our results with equations given previously in the literature.
Apparently the distinction between the orientational dynamics in a true nematic phase
and in an isotropic phase has not been stressed before. In the Appendix we discuss
biaxial fluctuations in a (uniaxial) nematic phase. Again their dynamics is different from
the orientational dynamics in the isotropic phase, which intrinsically contains uniaxial as
well as biaxial nematic fluctuations.

2 Nematic Order

In the uniaxial nematic phase of low molecular weight systems the mean orientation of
long rod-like molecules (or of the normals of plate-like molecules) is described (de Gennes
and Prost 1993) by a unit 'vector’ n (with n? = 1) with the additional condition that
all equations have to be invariant under the replacement of n by —n (that is why n is
not a vector in the usual sense and thus called a director). The dynamic equation for
the director is well known and conveniently expressed as (Martin et al. 1972; Pleiner and

Brand 1996)
1
i + vV yng —n; Qi + N ojp Ajy) = _y_hiL (1)
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where 05y = d; — ning and v is the velocity field, while Q; = (1/2)ek(curlv); =
(1/2)(Vvp — Vyv;) and Ay = (1/2)(Vjur, + Viv;) describe rotational and (generalized)
elongational flow, respectively. The 'molecular field’ hj- = (;x — nyni)0F/dny can be in-
ferred from a general free energy F' = [ fdV, with 2f = K, (V;n;)(Ving) — €o(E - n)?,
which contains (de Gennes and Prost 1993) the Frank orientational elastic energy (3
coefficients K 53 in Kjjj;) and the dielectric anisotropy energy (e,).

Eq.(1) contains 2 phenomenological parameters: The reactive flow alignment parame-
ter A\, which describes orientation due to symmetric velocity gradients, and the dissipative
orientational viscosity v, representing the orientational diffusion (or relaxation in the pres-
ence of an external field) of the director. Most important for the present purposes is the
observation that the orientation due to rotational flow is not governed by a material de-
pendent coefficient, but given by symmetry: Under a pure rotation one has 7; = ;;n;.
The same relation is obtained, if angular momentum conservation is employed (Pleiner
and Brand 1996). Eq.(1) describes, in the absence of external fields, through its coupling
to the velocity field, two hydrodynamic, typically non-propagating diffusive modes (shear-
orientational diffusion) characteristic for the spontaneously broken rotational symmetry
(Martin et al. 1972). Note that eq.(1) has the most general form allowed by symmetry
and thermodynamics up to linear order in the velocity and its gradients.

The degree S of the orientational order is defined as the quadrupolar mass moment
(de Gennes and Prost 1993) S = (1/2) < 3cos?6 — 1 >, where 0 is the angle between
the actual orientation of a particle relative to the mean orientation and < ... > is the
ensemble average over the whole system. In low molecular weight nematics far from the
isotropic phase transition S is assumed, on the relevant time and length scales, to be
relaxed to its equilibrium value S, (which is a function of the scalar state variables, like
temperature and pressure). However, near the phase transition, or in polymeric side-chain
systems, where the relaxation of S can become slow enough to be relevant (Pleiner and
Brand 1991, 1992), a dynamic equation for S is needed. It reads (Pleiner and Brand 1996)
neglecting the thermal and other possible scalar degrees of freedom

S' + UjVjS — (61_51']' + @zninj)Azj = —Rwa (S - Seq) (2)

where the 3’s (Liu 1979) are reactive transport coefficients describing linear couplings to
symmetric velocity gradients, x,, is a dissipative one and a is the static susceptibility of
order parameter fluctuations. The relaxation time is 7 = 1/(ak,,). Note that eq.(2) has
the most general form allowed by symmetry and thermodynamics up to linear order in
the velocity and its gradients. Sometimes the director n and the scalar order parameter
S are combined into a tensor order parameter (de Gennes and Prost 1993)

S

Qij = 5 (B — dy5) (3)

Using eqs.(1,2) for the field-free case we get
. 1 .
Qij + e ViQij + Qe + QirSlkj — Niju A = _;(Qij — Qi) +0(V?) (4)

with Qff = (Seq/2)(3nin; — dij). The viscous effects due to director rotations are rep-
resented only by O(V?), since we are mainly interested here in the nonlinear reversible
part of the dynamics. Apart from the trivial transport term there are two terms relating
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Q;; with flow, which do not come with a phenomenological parameter, Q5 + Qirs;-
These couplings to rotations are the nonlinear contributions of a ’corotational” or ’Jau-
mann’ derivative, which is the arithmetic mean of the appropriate 'upper convected’ and
lower convected’ terms. In contrast to the 'material frame indifference’ principle that
cannot decide, which linear combination of upper and lower convected terms is correct,
our treatment, based on the proper rotational behavior of the director and the scalar order
parameter, unambiguously leads to (4). The coupling to symmetric velocity gradients is
again phenomenological, i.e. material dependent according to the form of A;jx

1 1 2 . .
3\iji = A[S0uwdj + 5(51'ij1 + §5leik - gQiijl +1 <

P800+ 0)Qubk + 5 fuQuQu 8

which contains 3 phenomenological coefficients even in linear order (i.e. S taken at S,);
there are no additional nonlinear coefficients. The reason is that (4) does not have the
most general form, but has to be compatible with the special (uniaxial) form of @Q;; (3).
The latter also ensures that ();; remains traceless for all times, since €2;;Q;; = 0 and
Sop + Q= %ij@jl-

In the case of a static external field E that is assumed to influence the director dynamics
only through the dielectric anisotropy energy mentioned above, there is a second relaxation
time involved.! For €, > 0 the equilibrium orientation of the director is n, =E/FE = E
and on; = n,; — E’Z relaxes to zero with the rate 7, V= ¢, E? /71 Then the right hand side
of (4) is replaced in linear order by

: 1 1 1 L " . .
Qij+-- = _;5% - (E — ;)((5QikEkEj +0QnEp By — 2FE; 6Qu.EpEy) + O(V?) (6)

where 0Qi; = 3S.,(F;0n; + Eion;) + L(S — S.,)3EE; — 8;5).

In order to use these nematic equations in polymeric systems, they have to be amended
by dynamic equations for other degrees of freedom, like the usual conserved quanti-
ties (mass, momentum, and energy) and those describing special polymer effects (visco-
elasticity, shear thinning etc.). For side-chain nematic liquid crystals that has been dis-
cussed in linearized form in Pleiner and Brand (1991, 1992) and eqgs.(1-4) are a partial

generalization into the nonlinear domain.

3 Orientational Fluctuations

In the isotropic phase of low molecular weight nematogens (de Gennes and Prost 1993) and
stiff polymers (Doi and Edwards 1986) orientational fluctuations can become important,
especially as pre-transitional effects near the phase transition. Since there is no nematic
order in equilibrium (S, = 0 = Q7}) a director does not exist (and thus eq.(1) cannot be
used), but fluctuations of ();; are possible. Having the same symmetry properties as @;; in
the nematic phase the structure of the dynamic equation for the orientational fluctuations
is that of (4)

. 1
Qij + Ve VieQij + Qi Qi + Qikj — NijriAr = _T_Qij +0(V?) (7)
1

'For possible effects of an external electric field on the dynamics of n cf. Pleiner and Brand (1996)
and Brand and Pleiner (1984).



Again, the nonlinear reversible terms are of the corotational or Jaumann derivative type,
and there is a phenomenological coupling to symmetric velocity gradients. In linear order
it has the form ((de Gennes and Prost 1993) generalized to compressible flows)

A = M (B + Gl — §5ij5kl) (8)

and contains one phenomenological, material dependent coefficient. Since the phase tran-
sition to the nematic phase is first order (i.e. no smooth transition at S = 0), the
coefficient \; is not related to the coefficients A or (5, , in (5). In quadratic order there
are two

ua 4
/\Ej?kl b=\ (0@ + 0k Qu + 61 Qik + 0aQjx — 3 05 Q1) + N30 Qs (9)

and in cubic order 5 phenomenological coefficients

ou 2 1
Az(jklb) = MQuQij + s (QuQj + QrQu — §5iijszp) + A60r (QipQjp — §5ijququ)
4
FA7 (0 QipQip + 0k QipQip + 051 QipQrp + 00 QjpQrp — §5ijkaQpl)
2
+As(0irdji + 0105 — §5ij5kl)ququ (10)

The cubic (and higher) order terms are assumed to be rather unimportant and kept here
for later comparison, only. There are more phenomenological coefficients involved in (8-
10) than in (5), since in the isotropic case @);; has to be symmetric and traceless only,
while in the nematic case it has the special uniaxial form. If in eq.(4) the Jaumann terms
are combined with the quadratic contribution (9) for the special value Ay = 1 (= —1) one
gets something that looks like an upper (lower) convected derivative 2. However, there is
no reason why such a relation should hold for all different materials nor can it hold for
all temperatures and pressures, since Ay generally depends on all scalar state variables.

In (7) the relaxation on the r.h.s. is written in linear approximation. More generally
it can be written as —k(6F[Q]/dQ;;) with the Landau type free energy F[Q] = [ fdV
where (de Gennes and Prost 1993)

f= g%@m’ + gQiijka + %(QijQij)Q + %QiijkalQli +0(V?) (11)

and ak = 1/7,. Close to the nematic phase transition a is strongly temperature dependent,
a = o(T — TF) with T the hypothetical transition temperature, if the transition were
second order.

4 Stress Tensor

In the preceding sections we discussed nonlinear reversible terms in the dynamic equation
for the orientational order (7) that describe couplings to flow. In the Navier-Stokes
equation, on the other hand, there must be appropriate counter terms describing couplings

2 _ with some additional correction terms that ensure Q;; = 0. Most of the terms in (8-10) show such

correction terms, while the Jaumann terms in (4) do not need them.
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to orientational order, due to the requirement of zero or positive entropy production, R,
in the case of reversible and irreversible terms, respectively (Martin et al. 1972; Grmela
1985b; Pleiner and Brand 1996). Their form can also be derived from Onsager relations.
For the stress tensor, defined by ¢; + V;0;; = 0, where g; is the momentum density, this
leads to the expression

Oij = Vigj +poij — VijAp + Uﬁd) — Metij U+ VieQik — VinQir + O(V?) - (12)

where 1);; is the thermodynamic conjugate to @;; defined by v;; = 0f/0Q;; with f the
energy density. Again, gradients of ();; have been neglected here. Since @);; is traceless
and symmetric, only the traceless and symmetric part of v;; is relevant and enters (12).
The free energy density is coupled to all variables by the Gibbs relation (Martin et al.

1972)
de —Tdo = Uldgz + ¢z]dQ2] (13)

where only the contributions relevant for the present discussion are shown. The total
energy density € is a conserved quantity, while o, the entropy density, contains the entropy
production R as source term in its dynamical equation, ¢+ Vijz‘( 9 — R/T. The first three
terms in (12) are those of a standard simple fluid, describing momentum convection,
isotropic pressure (balancing in the entropy production the transport terms of all dynamic
equations (Pleiner and Brand 1996)) and Newtonian viscosity, while O'Z(;-ld) describes the
contributions from all additional relevant degrees of freedom for polymers not considered
here ®. The counter term to the linear elongational flow term in (7), ~ Ay, leads to a
symmetric part of the stress tensor, while the counter terms to the nonlinear Jaumann
terms seem to give an antisymmetric contribution to the stress tensor. However, if we
apply the Gibbs relation (13) to solid body rotations, which leave the energy density
unchanged (de = 0), the relation 0 = v;a;,gx + VijirQr; + Vi;a;,Qix is obtained (for an
arbitrary antisymmetric a;;), from which we get

VirQjr = VixQux (14)

This condition on 1);; ensures that the Jaumann terms in (7) do not at all contribute to
the entropy production (wijQij) and do not need counter terms (i.e. these counter terms
are identically zero). Thus, the stress tensor is symmetric in its gradient-free part (while
the Ericksen stress containing gradients of ();; is not manifestly symmetric, but can be
made effectively symmetric by a well known procedure (Martin et al. 1972)).

Eq.(12) can be used to derive the connection between ();; and the stress that is induced
by it. In the isotropic phase eqs.(8,9,11) give

o9 = —2)\aQi; — 200ub + 209a)QuQjx — 0 (Asa — sMD)QuQu +0@3) - (15)

]
where we have refrained from writing down explicitly the third order contributions. In
linear order, the simple stress-optical law (ai(jQ) ~ @;;) is obtained, while in the nonlinear

(@)

regime, already in quadratic order, no such simple law is found. Here 0, is not even

30ne example is the transient elasticity described e.g. by a time evolution equation for the Eulerian
strain tensor. The nonlinear elastic stresses related to this degree of freedom are discussed in (Temmen
et al. 2000, 2001; Pleiner et al. 2000).



traceless indicating that nonlinear orientational fluctuations not only couple to shear and
elongation, but also to compression. In the nematic phase eqs.(5,12) lead to

3 3
o = — A (natny + gt — 2ningnun) — 5 (8103 + Baning)ni
1
= 5 AS(mih + nihi) = a(BLdi; + Baning)(S — Seq) (16)

where h;-, defined after (1), is ~ O(V?) in the absence of external fields. Thus, O'Z(]Q)
does not have the tensorial structure of );; and a simple stress-optical law is not valid.
This fact could be experimentally used to discriminate fluctuating nematic from director
dynamics.

5 Comparison

For low molecular weight liquid crystals the dynamic equation for an alignment tensor
(equivalent to @);;) in the nematic as well as in the isotropic phase has been derived by
Hess (1975a, 1975b) a long time ago. From the correct behavior under rigid rotations
he gets Jaumann-type quadratic reversible nonlinearities in complete agreement with our
eq.(4). The reversible reaction to symmetric velocity gradients is somewhat buried in the
irreversible part of an enlarged dynamics, since his approach is in the Leslie-Ericksen spirit,
where basically Qw (in addition to @);;) is taken as a variable. This is completely analogous
to the usual nematodynamics (de Gennes and Prost 1993). The flow alignment, which is
reversible, is then obtained as the ratio of two irreversible processes and is described by
one phenomenological parameter (7,,/7, in Hess (1975a, 1975b)). In the linearized regime
this is in agreement with our strictly thermodynamic description concerning the director
dynamics (A for the nematic and A; for the isotropic state), but there is no counterpart
in Hess (1975a, 1975b) to our 3, and /3, contributions related to the reversible dynamics
of S. The nonlinearities of eq.(5) and eqs.(9,10) are also not contained in Hess (1975a,
1975b).

However, quite rarely have the equations of Hess (1975a, 1975b) been taken over when
orientational effects in polymeric systems have been described (one exception is Tanaka
(2000)). Instead, most authors rely on the Doi-Edwards model (Doi and Edwards 1986).
This has been developed originally Doi (1981), Kuzuu and Doi (1983) as a microscopic
description in terms of a hierarchy of coupled correlation functions. Only after a closure
assumption (which can hardly be motivated or controlled by physical considerations)
a single equation for the lowest orientational correlation function is obtained, which is
then applied to macroscopic situations (e.g. in Larson (1988), Olmsted and Lu (1997,
1999)). Assuming that the Doi-Edwards model is valid for macroscopic situations we can
compare their equations (basically (8.149) and (10.75) of Doi and Edwards (1986)) with
(4). The Doi-Edwards equation is written in the form of an upper convected model (with
a correction to guarantee S;; remaining traceless, where S;; = (2/3)Q;; in our notation).
However, there are additional model-dependent couplings to symmetric velocity gradients
that allow this equation to be rewritten in the form of our eq.(4) with a A-tensor of the
form

1 2 4
Agﬁ?) = 5(5%5]'1 + 00 Q1 + 0 Qik + [i < j]) — gél-ijl — gQiijl (17)



In the isotropic case comparison with (8-10) reveals that in the Doi-Edwards model the
phenomenological parameters have special values, A\ = 1/2, Ay = 1/2, \y = —4/3,
A5 = 0= \; =0 = Ag, while A3 and \g are not defined, because incompressibility Ay, = 0
is assumed in Doi and Edwards (1986).

The Doi-Edwards model is said (Chapt. 10.4.3 in Doi and Edwards (1986)) to be
equally valid for the nematic phase, in which case we have to compare eq.(17) with (5).
Apparently (17) is quite different from (5) and cannot be brought into that form by
any choice of the parameters involved. The reason is that the Doi-Edwards model, and
particularly the form of (17), is not compatible with the uniaxial form (3) of @;;. The
latter requires, e.g.

r ctr 1 r -
5fq6;inj = _géfoqnijij (18)

which are two equivalent ways of extracting S from Q” It is easy to see that the phe-
nomenological part of the dynamics given by (17) does not fulfill (18), because 0,077 Axi #
5;25Z§Akl. Of course, the form of A;;; given by (5) is compatible with (18) by construction.
In addition, the Doi-Edwards model is also not compatible with biaxial fluctuations (cf.
Appendix), since in that case two different relaxation processes are involved (cf. eq.(A.7)).

In Denniston et al. (2000, 2001) and Feng et al. (1998) the dynamic equation for
Qij is written in the form (4) with the coupling to symmetrized velocity gradients given
by a A-tensor of the Doi-Edwards form (17) multiplied by an overall factor (called ¢ and
A, respectively) that represents a fudge factor to compensate errors due to the closure
approximation and/or takes into account the geometric aspect ratio of the stiff polymers.
The comparison to our expressions for A;jx, eqs(5, 8-10) is therefore similar to that for
the Doi-Edwards expression.

In Beris and Edwards (1994) general dynamic equations for the alignment tensor
(equivalent to Q;;) are derived using the Poisson bracket method. This has to be com-
pared to our equations in Sec. 3. In the incompressible limit, where the number of our
A-coefficients in egs.(8-10) is reduced to one, one, and two, respectively, the results seem
to coincide. However, this alignment tensor description is not applicable to the nematic
phase, where the existence of the director leads to more specific equations (Sec. 2), espe-
cially in the nonlinear domain. Furthermore, the alignment tensor, being symmetric and
traceless, contains 5 elements connected to uniaxial (two angles and one degree of order)
as well as biaxial (one additional angle and the degree of biaxial order) orientations. Thus,
if this description is applied to the (uniaxial) nematic phase, it should be compared with
the (uniaxial) hydrodynamic description including biaxial fluctuations (cf. Appendix). In
that case, however, two independent relaxation processes are involved, the relaxation of
the uniaxial degree of order to its finite equilibrium value as well as the relaxation of the
biaxial degree of order to zero (A.7), while the alignment tensor description contains only
one relaxation process.

In our hydrodynamic description those parts of the stress tensor that result from
the orientational order are fixed by the zero entropy condition, once the equations for the
orientational dynamics are derived. Thus, for theories in the literature that use equivalent
procedures to get the stress tensor, the comparison to our expressions of the stress tensor
(12,15,16) goes along the same lines as the comparisons given above with respect to the
orientational dynamics. This is different for cases where the stress tensor has not been
connected with the orientational dynamics but derived from, e.g. the free energy (Doi
and Edwards 1986; Tanaka 2000). Here typically only a linear contribution is obtained,



but not the nonlinear ones, cf. (15). Thus, a stress-optical law is postulated, while
actually such a law only exists in linear approximation. We also notice that nowhere our
relation (14) has been given, which ensures the symmetry of the stress tensor and, as a
consequence, the conservation of angular momentum density.

Appendix: Biaxial Fluctuations

In the isotropic phase (Sec.(3)) we have discussed the dynamics of the full nematic order
parameter ();;. Being a symmetric traceless tensor it contains 5 independent fields de-
scribing uniaxial as well as biaxial nematic fluctuations. In the uniaxial phase (Sec.(2))
we dealt with the orientational dynamics of the (uniaxial) director n as well as with fluc-
tuations of the strength S of the uniaxial order. In this Appendix we will allow for biaxial
fluctuations within the uniaxial nematic phase. Such fluctuations are described (Jacob-
sen and Swift 1982; Brand and Swift 1983) by a two-dimensional symmetric traceless
tensor &;; that lives in the plane perpendicular to the (uniaxial) director n. It describes
the strength of biaxial fluctuations (by a scalar field n7) as well as the orientation of the
transient biaxial preferred direction (by an angle ¢) by

§11 = —&22 = ncos 29, §12 = €21 = nsin2¢ (A-l)

or n* = & + &7y and 2¢ = tan™" (§12/11).

In order to get the nonlinear dynamic equation for §;; we digress shortly to a true
biaxial nematic phase, where the anisotropy in the plane perpendicular to n is described
(de Gennes and Prost 1993) by a set of two orthogonal unit vectors m and p

&ij = n (mim; — pipj) (A.2)

whose orientation is given by the angle ¢ (with respect to an arbitrary reference direction).
Its dynamics has the form (Brand and Pleiner 1981; Liu 1981)

. m 1 m

with ™ = §F/ém; and Qj; = 047,04 Qp the projection of the antisymmetric velocity
gradients onto the plane perpendicular to n. There is a similar equation for p;. The phe-
nomenological part of (A.3) contains the coupling to the symmetrized velocity gradients
(through )\EZ;) ) and to the (dissipative) orientational diffusion of m; (through (™), the
latter of which we do not need explicitly here.

The scalar biaxial order parameter 7 obeys a relaxation equation resembling (2) for S
: N — (7)A.,:_l _ A4
n+vV;n ﬁz] ij - (N = Neq) (A.4)

"

Now, eqs.(A.3) and (A.4) can be combined to give (in the absence of external fields)

éz‘j + v Vi&ij + Qi_igjk + Qé_jgik — AE%AM = ——(&; — fff) +0(V?) (A.5)

1
Tn
with fqu = Neq (MiMj — PiD;j)-

10



In the uniaxial phase the biaxial fluctuations &;; follow the dynamic eq.(A.5) with
Neq = 0 and with the phenomenological biaxial flow alignment tensor (up to quadratic
order)

Ao = AD(Olaty + 8ot — 8oty + €Ak + Aanny)
AP (bl + €487 + bl + 0ty — 287 6) + AP €60 + O(3)  (A6)

J

We can now define a biaxial tensorial order parameter Qg) = Qi + &j, where @5 is of
the uniaxial form used in Sec.2. For that quantity the dynamic equation reads combining

eq.(4) and (A.5)

QS” + kasz(-f) + Q;Z)Qki + QEZ)QM — (Nijl + )‘gf‘l)gl)Akl

R N R 10 6 4 2
= T(Qij QJ’)HT Tn)(% Qij) +O(V7) (A7)

with A\ given by (5) and )x%,ll by (A.6), where &;; is replaced by Qg) — @ij- Again,
the dynamics of Qg)) shows a corotational form for the non-phenomenological part of
the nonlinear reversible dynamics and in addition, a phenomenological generalized flow
alignment-type response to elongational flow. There are now two relaxation processes
involved, one related to the S, the uniaxial, and the other related to the 7, the biaxial
scalar order parameter.

References liquid crystal hydrodynamics. Phys Rev
E 63:056702-1-10

Beris AN, Edwards BJ (1994) Thermodynam- Doi M (1981) Molecular dynamics and rhe-

ics of flowing systems with internal mi- ological properties of concentrated solu-

crostructure. University Press Oxford tions of rodlike polymers in isotropic and
Brand HR, Pleiner H (1981) Hydrodynamics liquid crystalline phases. J Polym Sci Pol

of biaxial discotics. Phys Rev A24:2777- Phys 19:229-243

2788 Doi M, Edwards SF (1986) The theory of poly-
Brand HR, Swift J (1983) Macroscopic dy- mer dynamics. Clarendon Press Oxford

namics in nematics near the uniaxial-  Dgyaloshinskii IE, Volovik GE (1980) Poisson

biaxial phase transition. J Phys Lett brackets in condensed matter physics.

(Paris) 44:1.333-1.337 Ann Phys (NY) 125:67-97

Brand HR, Pleiner H (1984) Macroscopic
dynamics of chiral smectic C. J Phys

(France) 45:563-573 ] which to use in simulating complex flows
de Gennes PG, Prost J (1993) The physics of of liquid-crystalline polymers? J Rheol
liquid crystals. Clarendon Press Oxford 49:1095-1119

Denniston C, Orlandini E, Yeomans JM
(2000) Simulations of liquid crystal hy-
drodynamics in the isotropic and ne-
matic phases. Europhys Lett 52:481-487

Denniston C, Orlandini E, Yeomans JM
(2001) Lattice Boltzmann simulations of

Feng J, Chaubal CV, Leal LG (1998) Clo-
sure approximations for the Doi theory:

Grmela M (1984) Bracket formulation of dis-
sipative fluid-mechanics equations. Phys
Lett A 102:355-358

Grmela M (1985a) Bracket formulation of dis-
sipative time evolution-equations. Phys
Lett A 111:36-40

11



Grmela M (1985b) Stress tensor in generalized
hydrodynamics. Phys Lett A 111:41-44

Grmela M (1986) Bracket formulation of
diffusion-convection equations. Physica
D 21:179-212

Hess S (1975a) Irreversible thermodynamics of
nonequilibrium alignment phenomena in
molecular liquids and in liquid crystals.
I. Derivation of nonlinear constitutive
laws, relaxation of the alignment, phase
transition. Z. Naturforsch 30a:728-738

Hess S (1975b) Irreversible thermodynamics of
nonequilibrium alignment phenomena in
molecular liquids and in liquid crystals.
II. Viscous flow and flow alignment in the
isotropic (stable and metastable) and ne-
matic phases. Z. Naturforsch 30a:1224-
1232

Jacobsen EA, Swift J (1982) Light scatter-
ing at the uniaxial-biaxial transition in
nematic liquid crystals. Mol Cryst Liq
Cryst 87:29-39

Kuzuu N, Doi M (1983) Constitutive equation
for nematic liquid crystals under weak
velocity gradient derived from a molec-
ular kinetic equation. J Phys Soc Jpn
52:3486-3494

Larson RG (1988) Constitutive equations for
polymer melts and solutions. Butter-
worths, Boston

Liu M (1979) Hydrodynamic theory near the
nematic - smectic A transition Phys Rev
A19:2090-2094

Liu M (1981) Hydrodynamic theory of biaxial
nematics. Phys Rev A24:2720-2726

Martin PC, Parodi O, Pershan PS (1972) Uni-
fied hydrodynamic theory for crystals,

12

liquid crystals, and normal fluids. Phys
Rev A6:2401-2420

Olmsted PD, Lu CYD (1997) Coexistence and
phase separation in sheared complex flu-
ids. Phys Rev E 56:R55-R58

Olmsted PD, Lu CYD (1999) Phase sepa-
ration of rigid-rod suspensions in shear
flow. Phys Rev E 60:4397-4415

Pleiner H, Brand HR (1991) Macroscopic dy-
namic equations for nematic liquid crys-
talline side-chain polymers. Mol Cryst
Liq Cryst 199:407-418

Pleiner H, Brand HR (1992) Local rotational
degrees of freedom in nematic liquid-
crystalline side-chain polymers. Macro-
molecules 25:895-901

Pleiner H, Brand HR (1996) Hydrodynamics
and electrohydrodynamics of liquid crys-
tals. In Buka A, Kramer L (eds) Pattern
formation in liquid crystals. Springer,
Berlin Heidelberg New York

Pleiner P, Liu M, Brand HR (2000) The struc-
ture of convective nonlinearities in poly-

mer rheology. Rheol Acta 39:560-565

Tanaka H (2000) Inhomogeneous flow in a one-
component polymeric fluid with a non-
monotonic constitutive law. J Phys Soc
Jpn 69:299-302

Temmen H, Pleiner H, Liu M, Brand HR
(2000) Convective nonlinearity in non-
Newtonian fluids. Phys Rev Lett
84:3228-3231

Temmen H, Pleiner H, Liu M, Brand HR
(2001) Temmen et al. reply. Phys Rev
Lett 86:745



