
COMMENT ON

”COUPLING BETWEEN ELASTIC DEFORMATION AND CONCENTRATION

IN A TWO-COMPONENT NEMATIC LIQUID CRYSTAL”

Helmut R. BRAND (1) and Harald PLEINER (2)

(1) Theoretische Physik III, Universität Bayreuth, D 95440 Bayreuth, F.R. Germany

(2) Institut für Physik, Universität Augsburg, D 86135 Augsburg, F.R. Germany

Fachbereich Physik, Universität Essen, D 45117 Essen, F.R. Germany

Europhys.Lett. 26, 395 (1994)

PACS Classification : 05.70.Ln, 61.30.-v

1



Recently [1] the existence of a cubic cross-coupling term between concentration varia-

tions and splay of the director field was pointed out and it was argued that this contribution

leads a) to a reduction of the energy associated with dislocations and b) to a stabilization

of high-strength disclinations in doped nematics.

Here we show a) that quartic terms in the energy are needed to preserve thermostatic

stability; and that the inclusion of these quartic terms (in addition to the suggested cu-

bic one) leads b) to an increase in the energy associated with dislocations and c) to a

destabilization of high-strength disclinations in doped nematics. As a result there is still

no mechanism known to date, that would be compatible with the stationary existence of

high-strength disclinations.

Motivated by the observation of high strength dislocations in doped nematics on a

fairly long time scale [2], Ragunathan tried to explain their enhanced stability in these

mixtures. Such long lived, high-strength defects in nematic liquid crystals have also been

observed in lyotropic low molecular weight systems [3] as well as in polymeric liquid crystals

[4,5]. Thus the need for an explanation of the long, and - perhaps - infinite, lifetime appears

well documented. All these systems have in common that they are not single phase (case of

the low molecular weight systems) or not monodisperse (the polymeric systems). Therefore

it seems quite natural to consider a coupling of director deformations to concentration

variations as a way to resolve the puzzling experimental results [1].

Accordingly Ragunathan suggests a cubic contribution to the energy, which is quadra-

tic in the splay field and linear in the concentration variations. Using only this term in

addition to the terms classically present for the deformation energy of nematic liquid cry-

stals, Ragunathan then calculated the energy of dislocations and of high-strength defects.

He concluded that this one additional contribution to the energy is enough to explain the

experimental observations [2].

However, the energy written down in [1] is not a positive definite form as it must be
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to guarantee local thermostatic stability [6,7]. If the energy were not bounded from below,

the system were unstable and small fluctuations would drive it into a different ground

state. However, expanding the energy around this new (stable) ground state would result

in a form, whose positivity were required by thermostatic stability. Thus, to guarantee

stability, quartic terms must be added to the energy suggested in [1]. Using the notation

of [8] and [1] whenever possible, we have for the energy the expression (keeping all terms

up to quartic order relevant for the discussion below)

f =
1
2

∫ ∫ (
[K1 − αδc + η(δc)2](divn̂)2 + β(δc)2 + ζ(δc)3 + µ(δc)4 + γ(divn̂)4

)
dxdy

(1)

For eq.(1) the condition of thermostatic stability leads to the positivity conditions

K1 ≥ 0, γ ≥ 0, β ≥ 0, µ ≥ 0, η ≥ 0 (2a)

4 (βγ + K1η)− α2 ≥ 0 (2b)

4 βµ− ζ2 ≥ 0 (2c)

For the same cylindrical geometry as in ref.[1] we obtain instead of eq.(7) in [1] taking into

account the effects of the quartic terms ∼ γ and ∼ η
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where ρ1 is the radius of the inner cylinder and ρ2 that of the outer one. Similarly we

find for disclination defects of strength s, instead of eq.(12) in ref.[1]
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where ρc(s) is the core radius, s the defect strength and L the radius of a cylindrical region

[1]. There is neither a lowering of a defect energy nor a stabilization of high-strength
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defects, since the second (via (2b)) and third contribution in (4) are manifestly positive

and corrections of the order L0 to the main result [9] ln(L/ρc) are generally neglected

(note that η/β ≤ ρ2
c for a gradient expansion like (1)). All contributions scale like s2, since

ρc(s) ∼ s [10], and f scales globally with s2 (apart from logarithmic corrections). Thus,

none of the various energy contributions will change its importance relative to others by

considering higher defect strengths s. Therefore on the basis of eq.(4) a decay of high-

strength defects, such as for example s = ±3/2 and s = ±2, into defects of lower strength

is expected.

The remaining terms ζ(δc)3 and µ(δc)4 in eq.(1) do not alter these results due to the

boundedness of ζ (eq.(2c)), although a simple analytical expression can no longer be given

in this most general case. We close by noting that similar cubic terms as in [1] have been

considered before in [11] in a different context.
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