
Destabilization of a Layered System by Shear FlowG�unter K. Auernhammer�, Helmut R. Brand�, Harald Pleinerx�Theoretishe Physik III, Universit�at Bayreuth, 95440 Bayreuth, Germanyx Max-Plank-Institut f�ur Polymerforshung, 55021 Mainz, GermanyI. IntrodutionShear experiments performed on a variety of lay-ered systems have revealed a strong oupling be-tween the orientation of the layers and the ap-plied shear ow. Independent of the signi�antdi�erenes between the system under investiga-tion, shear turns out to inuene both the orien-tation and the arrangement of the layers. The ex-periments were arried out on polymeri and lowmoleular weight (LMW) lyotropi systems [1{4℄,liquid rystalline polymers [5℄, LMW thermotropismeti A [6℄ and lamellar phases of blok opoly-mer melts [7{10℄. Starting with a well alignedstate of layers parallel to the plates (\parallel"alignment, see Fig. 1), by inreasing the appliedshear rate, the layers beome unstable and eitherlayers within the xz-plane (\perpendiular" align-ment) [7℄ or multilamellar vesiles (\onions") [1, 3℄form. In some systems a seond parallel alignmentof the layers is observed at high shear rates [10℄.If a statistial distribution of layer orientation ishosen as initial ondition, no parallel alignmentis observed at low shear rates and reorientationphenomena seem to be governed by the appliedstrain rather than the applied shear rate [4, 8℄.In this ontribution we present a simple modelto explain the destabilization of originally paral-lel layers by an applied shear [11℄. In ontrast toother approahes we derive the marosopi hy-drodynami equations of our model and performa linear stability analysis of these equations. Thisproedure allows us a straight forward inlusionof dissipative e�ets. To derive the marosopiequations we follow the standard proedure of irre-versible hydrodynamis [12{14℄. In our simple pi-ture all mentioned layered systems are isomorphito smeti A liquid rystals (LCs), i.e. we negletpolymeri degrees of freedom and the ouplingof thermal layer utuations to the shear ow.Within this simple model of a layered struturewe show that parallel layers are unstable above aertain ritial shear rate.
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dFigure 1: We onsider an idealized geometry of a shearexperiment. Between two parallel plates we assume adefet-free well aligned lamellar phase. The upper platemoves with the veloity v02 in positive x-diretion, thelower plate moves with the same veloity in negativex-diretion.II. Physial MehanismWe onsider an in�nite layer of a mono-domainsmeti A liquid rystal of thikness d as shownin Fig. 1. Both plates move with a veloity of v02along the x-axis but in opposite diretion, thusgiving rise to an average shear rate of _ = v0d .Similar to LMW nematis one an easily de�nea diretor n̂ in layered systems via averaging overthe axes of the moleules. A seond axis of thesystem is given by the normal to the layers p̂. Inthe usual piture of a smeti A LC n̂ and p̂ areparallel sine the diretor is perpendiular to thelayer by de�nition. The underlying nemati orderis thus totally governed by the smeti layering.In our model we drop the assumption that n̂ isparallel to p̂. Both diretions are dealed as in-dependent variables whih are oupled elastially.This elasti oupling guarantees that n̂ and p̂ areparallel in equilibrium.The motivation for this generalized model ofa smeti A lies in the well known oupling be-tween the shear ow and the nemati order: Ex-posed to a shear ow a homeotropially alignednemati feels a torque on the diretor. Dependingon the material parameters this torque leads |inthe simplest ase| to a ow alignment of n̂. Ourkey assumption is that this torque is also present1
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Figure 2: A �nite angle between the layer normal p̂and the diretor n̂ indues a tendeny of the layers toredue their thikness (a). Supposing the total numberof layers is onstant, the system tries to aommodatethis tendeny by rotating the layers. Global rotationsare not possible due to the boundary onditions, so thesystem rotates the layers loally as show in (b). Theamplitude of the undulations is highly exaggerated inthis �gure. Note the di�erene in the diretions: n̂ istilted in the x-diretion, whereas the wave vetor of theundulations points in the y-diretion.in a smeti A LC and that it is balaned by theelasti oupling between n̂ and p̂.Under shear the balane between this torqueand the elasti oupling of n̂ and p̂ leads to a �-nite angle between these two diretions, whih weall ow alignment. As illustrated in Fig. 2a thisow alignment is equivalent to an e�etive dilata-tion of the layers. As in the ase of dilated ther-motropi smeti A LCs, above a ertain thresholdthe system answers to this e�etive dilatation bydeveloping undulations [15, 16℄ (see Fig. 2b).III. Set of Marosopi EquationsIn the following we will disuss briey the termsentering the energy density due to the symmetryof the system. Besides n̂ and p̂ it is very onve-nient to introdue the variable u whih is the layerdisplaement along the z-axis (u is onneted to p̂via p̂ = r(z�u)jr(z�u)j). The diretor n̂ does not distin-guish between head and tail, thus it must ourquadratially in this energy density. Furthermorethe energy density of the system is invariant un-der rigid rotations. In this paper we adopt thestandard notation 12K1(r � n̂)2+12K2[n̂ � (r� n̂)℄2+12K3[n̂� (r� n̂)℄2 whih represent splay, twistand bend deformations respetively [17℄.Similarly, in the part representing the layering

of the system, terms orresponding to rigid rota-tions or translations must not our. Sine par-ity requires that u ours quadratially in the en-ergy density, the lowest order terms an be writtenas 12K ��2u�x2 + �2u�y2 �2 + 12B0 ��u�z �2 ; desribing theurvature of the layers and their dilatations.As mentioned above rigid rotations of n̂ to-gether with p̂ do not ontribute to the energy den-sity due to rotational invariane, but relative ro-tations of n̂ versus p̂ may ontribute to the energy.Assuming a small angle between n̂ and p̂ we writethis term as 12B1(n̂� p̂)2: We note that this termis non-hydrodynami, sine it does not vanish inthe limit of small wave number exitations (i.e.q ! 0). It thus leads dynamially to a relaxationand not to di�usive behavior in the long wave-length limit.In the following we make several simpli�ations:1) Sine bend deformations are rather higher or-der gradient orretions to dilatations, if the anglebetween n̂ and p̂ is small, we will neglet bend.2) In the hydrodynamis of smetis twist defor-mations are forbidden. Thus, for n̂ lose to p̂, anytwist of n̂ has to be very small and we will negletit. 3) A urvature of the layers is very similar to asplay deformation of the diretor, so we only keepthe latter one.To derive the set of marosopi equations de-sribing our model we follow the standard proe-dure [12{14℄. In addition to the energy densitydisussed above, other key ingredients in this pro-edure are the Gibbs relation, balane equationsfor the marosopi variables and the dissipationfuntion R. In the spirit of our model, we alsoassume n̂ and p̂ to be independent variables in theabove relations. For details of the derivation ofthe marosopi equations see [11℄.We �nd that the onditions for stationary solu-tions of n̂ and u are given by0 = � 12�ijkrjvk + 11 Æ?ikhk (1)0 = ri	i (2)with the ow alignment parameter �ijk =(�� 1)Æ?ijnk + (�+ 1)Æ?iknj , the onjugated vari-ables ~h and ~	 (related to n̂ and ru), the rota-tional visosity �11 and the transverse Kronekersymbol Æ?ij = Æij � ninj.The marosopi desription of our model on-tains elements of both, nemati and smeti Ahydrodynamis. Their usual desriptions are in-luded as limiting ases in our model, providedwe suppress the approximations made in the en-ergy density mentioned above. This implies, that2



our model does not desribe the nemati{smetiA phase transition. To inlude the phase transi-tion one has to take into aount the nemati andsmeti order parameters as additional dynamimarosopi variables.IV. Flow Alignment and its ConsequenesWe analyze the set of equations in two steps: Firstwe determine the ow �eld and the diretor as-suming that the layers are unhanged by the shearow. In a seond step we investigate undulationsof n̂ and p̂ with a wave vetor parallel to the y-diretion.Throughout our analysis the density � and thetemperature T are taken to be onstant. We as-sume weak anhoring at the boundaries in thesense that the diretor is free to rotate around itsequilibrium homeotropi orientation without anyenergy barrier. This implies that the boundarieshave no orienting e�et on the diretor �eld.Under the assumption that n̂ and u are onstantthe linear veloity pro�le ~v = _zêx satis�es linearmomentum onservation. Inserting this veloitypro�le in Eq. (1) and supposing an unhanged lay-ered struture leads to the equation��+ 12 � �n2x� _ = B11 nxnz + B01 nx(1�nz); (3)with nz = p1� n2x and ny = 0. For a small anglebetween n̂ and p̂, we �nd1 (to linear order in nx)nx = _ 1B1 1+�2 :As shown in Fig. 2a this result has impor-tant onsequenes: The non-vanishing projetionof n̂ on the ow diretion diretly leads to a z-omponent of the diretor nz = 1� 12n2x +O(n4x)less than unity. Following the disussion inSet. II, this tilt of n̂ is equivalent to an e�etivedilatation of the layers.To analyze the e�et of this dilatation we per-form a linear stability analysis of Eqs. (1{2), as-suming that the undulations of n̂ and p̂ do notouple to the veloity �eld. In aordane withthe results of [18℄ we suppose the wave vetor ofthe undulation to point in the vortiity diretion(Fig. 2b) ~q = qyêy.Undulating lamellae lie no longer in the xy-plane, so their dilatation an no longer be mea-sured along the z-axis. To take this into a-ount we use the well known replaement [15, 16℄1Note that this stationary solution also ours for j�j <1. The tumbling solution found for nematis for j�j < 1above the nemati-smeti A transition annot our insmeti A due to the layering.

�u�z ! �u�z � 12 ��u�y�2 in the energy density of thesystem. The undulation amplitude must vanish atthe plates, so our ansatz for the layer displaementis (see also Fig. 2) u = A os(�d z) os(qyy) + 12n2xz;where A is the small amplitude of the undulations,leading to a layer normal of the formp̂ = qyA os(�d z) sin(qyy) êy + êz +O(A2) (4)and similar ansatz for n̂n̂ = nxêx + qy ~A os(�d z) sin(qyy)êy+ (1� 12n2x)êz +O( ~A2; n4x): (5)In linear order the x- and z-omponents of (1) leadto the same result as equation (3). From the y-omponent of (1) we �nd that the ratio of the un-dulation amplitudes ontained in n̂ and p̂ is loseto unity ~A = B1B1+Kq2y nz A. Inserting this resultin (2) we �nd for the ritial values:q2y; = �dsB0K (6)n2x; = 4 pB0KB0 � 2B1 �d (7)_ = 41 + � B11 s pB0KB0 � 2B1 �d (8)Before disussing numerial values, we wantto point out some important impliations of ourmodel [Eq. (8)℄. The ritial shear rate inreaseswith inreasing B1. No undulation instability ispossible if 2B1 exeeds B0. This result ould ex-plain why some layered systems do not show adestabilization of the layers parallel to the platesunder shear ow (e.g. most thermotropi smetiA LCs far from the phase transition to the nematiphase).For smeti A LCs it is known [15, 16℄ thatthe ritial dilatation is of the order of 10�5, sowe expet nx; to be of the order of 10�2. Thus,there would be only a omparatively small hangeto the uniaxial nature of a layered system evenjust below the onset of the undulation instability.To give a numerial value for the ritial shearrate appears rather diÆult, beause neither theelasti onstant B1 nor the rotational visosity 1are used for the hydrodynami desription of thesmeti A phase. Therefore, the only possibilityappears to �nd measurements in the viinity ofthe nemati-smeti A phase transition. Measure-ments on LMW LCs made in [19℄ in the viinity3



of the nemati-smeti A transition indiate thatB1 is approximately one order of magnitude lessthan B0. As for 1 we ould not �nd any measure-ments whih would allow an estimate of its valuein the smeti A phase. In the nemati phase 1inreases drastially towards the nemati-smetiA transition.V. Conluding RemarksIn this paper we have shown that a modi�ationof the usual smeti hydrodynamis (layer normaland diretor are no longer parallel) leads to a owaligning behavior and thus to an e�etive dilata-tion of the smeti layers. A linear stability analy-sis shows, that above a ritial shear rate the owalignment is strong enough to ause an undula-tion instability and thus to destabilize the layeredstruture. We point out, that the linearized analy-sis presented here does not allow to predit whihstruture will be stable at shear rates above theritial shear rate. To overome this problem twostrategies an be followed. Either one expands thegoverning equations in small, but non-vanishingamplitudes (in the viinity of the threshold). Orone attaks the full non-linear equations by diretnumerial integration. Following the lines pro-posed above will allow to give a predition of thepattern formed above onset.For a transition from undulating lamellae to re-orientated lamellae or to multilamellar vesiles,defets have to be reated for topologial rea-sons. Sine the order parameter varies spatiallyin the viinity of the defet ore, a desription ofsuh a proess must inlude the full (tensorial)nemati order parameter as marosopi dynamivariables. Both types of re�nements (non-linearanalysis and inlusion of defets) are beyond thesope of the present paper.Using moleular dynamis omputer simula-tions Soddemann, Kremer and D�unweg reentlyon�rmed several features of the above model [20℄.Namely they identi�ed a ow alignment of the di-retor and undulations developing above a riti-al shear rate. Furthermore Noirez [21℄ found inshear experiment on a smeti A liquid rystallinepolymer in a one-plate geometry, that the layerthikness redues slightly with inreasing shear.This result is ompatible with the model presentedhere as well. In addition, reent experiments byM�uller et al. [2℄ on the lamellar phase of a ly-otropi system (a LMW surfatant) under shearsuggest, that multilamellar vesiles develop via anintermediate state haraterized by a distributionof diretor orientations in the plane perpendiu-
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