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A Landau-type free energy function is presented to describe the phase transitions from
an isotropic (superparamagnetic) ferrofluid to a ferromagnetic nematic liquid crystal
either directly or via a superparamagnetic nematic liquid crystal. These two nematic
phases are usually both called ’ferronematic’, although they are distinct phases. Both
show nematic ordering, but only the ferromagnetic phase shows spontaneous magnetic
ordering, additionally. The interplay of nematic with magnetic order is of special interest.
A phase with ferromagnetic order but no nematic order is not possible in the present
model, since the former always implies the latter (but not vice versa). In the presence
of a strong external magnetic field these transitions are smeared out and the different
ferronematic phases become more similar to each other.

1. Introduction and Motivation Ferrofluids are suspensions of nano-
sized ferromagnetic particles in some carrier liquid (for example, water or oil) [1].
Without an applied external magnetic field the orientations of the magnetic mo-
ments of the particles are random resulting in a vanishing macroscopic magne-
tization (magnetic disorder). An external magnetic field, however, easily orients
the particles’ magnetic moments and a large (induced) magnetization is obtained.
This ”superparamagnetic” property is the basis for many applications.

In 1970 the idea emerged [2] to dope nematic liquid crystals with a small
amount of ferromagnetic grains (volume fraction of 10−5 − 10−4) in order to en-
hance the magnetic susceptibility. The expectation was that a strong coupling
between the orientation of the magnetic grains and the nematic ordering induces a
spontaneous macroscopic magnetization (ferromagnetic state), which allows easy
control of the director alignment by weak external magnetic fields.

Quite rapidly, mixtures of thermotropic calamitic [3, 4] and discotic [5], as
well as lyotropic nematics [6] with ferroparticles were produced. However, these
systems were more like dirty liquid crystals, where the magnetic additives served
for a better orientation of the nematics in an external field. Problems were the
stability of these mixtures and the mutual orientation of the director and the
magnetization. The experimental situation changed considerably, when it was
possible to make stable emulsions, first as ferrosmectic systems [7–9], were the
ferromagnetic nano-particles are embedded in the layers. These ferrosmectics are
very dilute systems, which prevents their use in applications. Recently, stable
ferronematic systems, where the liquid crystal and the magnetic aspects are on
equal footing, have drawn increasing attention (apart from other rather exotic
phases, like ferrovesicles [10]). Birefringence [11–13] behavior in homogeneous
electric [14], and magnetic fields (including the Frederiks transition [13,15–17]) in
inhomogeneous fields [18], and under the influence of bounding surfaces [19] have
been investigated.

With the synthesis of thermotropic ferronematics [20] it turned out that the
orientation between the magnetization and the nematic director is not completely



rigid. Based on a microscopic treatment of rodlike ferromagnetic grains Burylov
and Raikher [21] derived an expression for the free energy of a ferronematic, which
treats the orientations of the magnetization and the nematic ordering as separate
degrees of freedom. As in Ref. [2] the strength of the magnetization is assumed
to be in saturation, even without external fields. However, in the ferronematics
produced up to now no indication of a true ferromagnetic behavior (spontaneous
magnetization in equilibrium without external fields) has been reported and they
all seem to be superparamagnetic like the ordinary isotropic ferrofluids.

Here we discuss possible phase transitions as a function of temperature (or
pressure or ferrofluid particle concentration) between an isotropic ferrofluid phase
(I), the superparamagnetic (N) and the ferromagnetic (F) nematic phase. Using
a Landau-de Gennes expansion of a nematic and a magnetic order parameter
up to fourth order, we find that depending on the signs and magnitude of the
crosscouplings between nematic and magnetic order there is the possibility to have
either a direct FI transition or a two-step NI and FN transition. Similarities to the
isotropic-nematic-smectic A transitions in ordinary liquid crystals are discussed.
In the ferromagnetic phase the magnetic and the nematic orientations are either
parallel or orthogonal. In the present model there is no possibility to have a
ferromagnetic phase that lacks nematic ordering. In the last section we show how
the jumps of the order parameters are reduced by the presence of an external field
and eventually are completely smeared out, if the field is strong enough.

2. Phase Transitions without Field The starting point of our approach
is to write down the Landau free energy density f . In order to obtain the isotropic-
nematic phase transition as well, we make use of the nematic order parameter
originally proposed by de Gennes [22], a symmetric, traceless tensor described by
Qij = 1

2S(3n̂in̂j − δij). The unit vector n̂ describes the orientation of the nematic
ordering. Since the nematic order does not discriminate between ”up” and ”down”
along the preferred direction, n̂ and −n̂ are equivalent and n̂ is called a director.
Qij is the simplest tensorial quantity compatible with this up-down symmetry.
The quantity S defines the strength of the nematic ordering (the modulus of the
nematic order parameter) and is zero (one) for complete disorder (order). Thus
in the isotropic phase S = 0 and in the nematic phase S 6= 0. The magnetic
order is described by the magnetization M = Mm̂ whose modulus M is zero in
a (super)paramagnetic and non-zero in a ferromagnetic state. The unit vector
denotes the orientation of the magnetic ordering. It is an axial vector, which is
odd under time reversal symmetry (like any magnetic field).

Keeping terms up to quartic order the total free energy density near the
isotropic/nematic and para-/ferromagnetic transition can be written as:

f = f0 +
A

2
QijQij − B
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QijQjkQki +

C1

4
(QijQij)2 +

C2

4
QijQjkQklQli

+
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M2 +

β

4
M4 +

γ
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MiMjQij +

δ1

2
M2QijQij +

δ2

2
MiMkQijQkj (1)

where f0 is the free energy density of the isotropic (superparamagnetic) ferrofluid
phase. The change of sign of A ≡ A0(T − T ∗

NI) and α ≡ α0(T − T ∗
FP ) at the

critical temperatures T ∗
NI and T ∗

FP corresponds to a hypothetical second order
isotropic to nematic, and to the para- to ferromagnetic transition, respectively,
if the cross coupling terms (∼ γ and ∼ δ1,2) are absent. All other coefficients,
as well as A0 and α0, are assumed to be constant near the transition point. For
pressure - or (more likely) - concentration-driven phase transitions one could write
A ≡ Ac(c − c∗

NI) and α ≡ αc(c − c∗
FP ) with a change in sign at some critical
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concentrations of ferroparticles. For simplicity we will stick to the temperature
related notation in the following.

In addition to the bi-quadratic couplings between the nematic and magnetic
order governed by the coupling coefficients δ1,2, there is also a cubic coupling
(∼ γ), which is most important for these transitions. As will be discussed below,
it is responsible for the fact that magnetic order induces the nematic order. As we
shall see, negative (positive) values of δ1,2 favor (disfavor) ferromagnetic nematics
over the (super)paramagnetic ferronematics.

We assume C1, C2, β and βC1,2 −δ2
1,2 to be positive to guarantee the stability

of the isotropic phase at high temperatures and B > 0 to get S > 0 in the
ferronematic phases, which is suitable for rod-like nematogens.

Here we consider phases in which the nematic and magnetic order are spatially
invariant, S = const. and M = const., and the ordering directions n̂ and m̂ make
an angle ψ, i.e. n̂ · m̂ = cos ψ. In that case eq.(1) reads

f − f0 =
3
4
AS2 − 1

4
BS3 +

9
16

CS4 +
1
2
αM2 +

1
4
βM4 +

3
4
δ1M

2S2

+
1
8
δ2M

2S2(3 cos2 ψ + 1) +
1
4
γM2S (3 cos2 ψ − 1) (2)

where C ≡ C1+C2/2. The presence of the cubic terms (∼ B and ∼ γ) describes the
first order character of the isotropic ferrofluid to ferronematic transitions. Eq.(2)
has a structure quite similar to that of a Landau free energy for the isotropic to
smectic A phase transition in conventional thermotropic liquid crystals [23].

Minimization of Eq.(2) with respect to S, M and ψ yields the following three
phases:

Isotropic Ferrofluid : S = 0, M = 0, ψ = undefined (3)

Paramagnetic Nematic : SN =
1

6C

[
B + (B2 − 24AC)1/2

]
> 0,

M = 0, ψ = undefined (4)

Ferromagnetic Nematic : SF > 0, M2 = − 1
β

(
α + γ̃SF + δ̃S2

F

)
,

ψ = 0 or π/2 (5)

where SF is defined by

− 2
3

αγ̃

β
+ 2A∗SF − B∗S2

F + 3C∗S3
F = 0 (6)

with the abbreviations A∗ = A − (2/3β)δ̃α − (1/3β)γ̃2, B∗ = B + (2/β)δ̃γ̃ and
C∗ = C − (4/9β)δ̃2. The new coefficients δ̃ and γ̃ depend on the angle ψ and are

δ̃ =

{
3
2δ1 + δ2

3
2δ1 + 1

4δ2

γ̃ =

{
γ for ψ = 0
− 1

2γ for ψ = π/2
(7)

There is no extremum of (1) with S = 0 and M 6= 0, i.e. no ferromagnetic phase
without nematic ordering. This can easily be seen directly from the coupling term
∼ γ in (1), where a finite M2 acts as an external ”field” on the nematic order,
thus inducing a non-zero S.

Necessary conditions for the different phases to be stable are

∂2f

∂S2
> 0,

∂2f

∂M2
> 0,

∂2f

∂ψ2
> 0,

∂2f

∂S2

∂2f

∂M2
− (

∂2f

∂S ∂M
)2 > 0 (8)
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The derivatives in (8) have to be taken at the values (3-5) for the appropriate
phases. For the isotropic ferrofluid phase the stability conditions are simply α > 0
and A > 0. The paramagnetic nematic phase is stable, if α + γ̃S + δ̃S2 > 0 and
24AC < B2.

The possible orientation between nematic and magnetic ordering in the fer-
romagnetic phase, either parallel (ψ = 0) or orthogonal (ψ = π/2), is fixed by the
third stability condition in (8), where the former (latter) orientation is obtained
for δ2SF + 2γ < 0 (> 0). Thus, a negative (positive) γ favors parallel (orthogo-
nal) orientation. In the parallel case the phase has uniaxial D∞h symmetry (as
conventional nematics), while in the orthogonal case the phase is biaxial with or-
thorhombic D2h symmetry. For ψ a value different from zero or ninety degrees
could only be obtained by taking into account terms higher than forth order in the
Landau expansion, a procedure, for which there is no a priori reason. The other
stability conditions for the ferromagnetic case read

A − BSF +
9
2
CS2

F +
2
3
δ̃M2 > 0 (9)

α + γ̃SF + δ̃S2
F < 0 (10)

A∗ − B∗SF +
9
2
C∗S2

F > 0 (11)

ensuring SF and M2 to be positive quantities. Obviously, a negative δ̃ enhances
the stability of the ferromagnetic phase. These stability conditions determine the
existence ranges (in terms of temperature) of the different phases rather implicitly.
The existence ranges of all three phases generally overlap. That phase with the
lowest free energy is the stable one. A (first order) transition takes place, when
2 free energies are identical. The isotropic ferrofluid to paramagnetic nematic
transition, thus, takes place, when the right hand side of (2) is zero taking for
M and S the values (4). This happens for A = B2/27C leading to a transition
temperature TNI = T ∗

NI +B2/27CA0 somewhat larger than the critical transition
temperature of the hypothetical second order transition.

The transition from the paramagnetic nematic phase (with finite SN ) to the
ferromagnetic one is then described by (2), which takes the form

f − fN =
1
2
α̃M2 +

1
4
βM4 (12)

where FN is the free energy of the paramagnetic nematic and α̃ = α+ γ̃SN + δ̃S2
N .

Obviously that transition is of second order and takes place at the temperature T =
T ∗

FP −(1/α0)(γ̃SN + δ̃S2
N ), which is shifted from the critical para- to ferromagnetic

transition temperature due to the finite nematic order. This shift can be negative
as well as positive, i.e. the existing nematic order can favor or disfavor an additional
ferromagnetic ordering. Again, a negative δ̃ favors the ferromagnetic ordering.

Of course, there is the competing possibility of a direct transition from the
isotropic ferrofluid to the ferromagnetic nematic phase. Substituting the solution
(5) for the magnetic order parameter M 6= 0 and for ψ into the free energy (2) we
get the free energy density for the ferromagnetic phase as a function of SF alone,
which can be written as

f − f0 = −α2

4β
− αγ̃

2β
SF +

3
4
A∗S2

F − 1
4
B∗S3

F +
9
16

C∗S4
F (13)

where the starred coefficients are defined after (6). Of the 3 possible extrema
( ∂f

∂S = 0 leading to a real solution for SF ) only those are relevant that exist within
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Figure 1: S and M2 versus temperature. The upper (lower) solid line represents
the orientational order parameter SF (SN ), while the dashed line represents the
(dimensionless) magnetic order parameter M2 in the ferromagnetic phase. The
values of the parameters in eq.(2) were taken to be α0 = .1K−1, A0 = .1K−1,
T ∗

NI = 301.7K, T ∗
FP = 302K, B = .8, C = .53, β = 8, δ̃ = −.89 (for the FI

transition), δ̃ = .16 (for the NI transition), and γ̃ = −.05 using a dimensionless
free energy density f .

the stability range of the ferromagnetic phase. Although the solutions are involved,
one important qualitative feature can be extracted immediately. It is obvious that
a continuous IF transition (SF = 0 = M at the transition temperature) is not
possible, except for the very special case B = 0 = γ (involving B∗ = 0 = γ̃) and
T ∗

NI = T ∗
FP . In the general case there is a jump in SF and M at some temperature

TFI . At that temperature the right hand side of (13) is zero for SF given by eq.(6).
Of course, TFI has to be larger than TNI for the direct transition to happen.
Such a case is shown in Fig. 1 by choosing an appropriate set of parameters and
numerically solving (6). Fig.1 shows that both order parameters, SF and M jump
simultaneously at the FI transition point. We also see that orientational order in
the ferromagnetic phase is much higher than in the (superparamagnetic) nematic
phase.

It is interesting to note that this phase transition is isomorphic to the direct
isotropic to smectic A transition for ordinary liquid crystals, where the role of the
magnetic order is played by the smectic order [23].

3. Phase Transitions in an External Field An external field induces
a finite magnetization in the ferrofluid by orienting the magnetic particles. In
addition it also orients the mesogens due to the diamagnetic anisotropy effect.
Thus, any phase has a finite S and a finite M due to the external field. This is
also obvious from the Landau free energy including the external field H

fH = f − M · H − χS

2
HiHjQij +

δ3

2
H2QijQij +

δ4

2
HiHkQijQkj (14)

with f the field-free energy (1). The angle between the magnetization and the
field is dominated by the ferromagnetic coupling −M · H with M parallel to H
being the ground state. Thus, the angle ψ between M and n̂ is also the angle
between H and n̂. Then the diamagnetic coupling (∼ χS) and the higher coupling
term (∼ δ4) have the same ψ-dependence as the γ- and δ2 terms in (2) leading
again to the free energy extrema at ψ = 0 or π/2. The former (latter) is the
stable minimum for [(δ2S + 2γ)M2 + (δ4S − 2χS)H2]S < 0 (> 0). The latter case
seems to be frequent in discotic lyotropic [19] and rod-like thermotropic nematic
systems [20].
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Figure 2: S(T ) and M2(T ) according to eqs. (15,16) for two different values of the
external magnetic field with n̂ and M parallel. The transition to the ferromagnetic
state (δ̃ = −.89) is discontinuous for (l) lower fields (H = .28) and becomes smooth
for (h) higher fields (H = .41). We have chosen χS = .05 and δ3 +(2/3)δ4 = −.89;
all other parameters are as in Fig.1.

Minimizing then (14) with respect to S and M leads to the coupled equations
for S(H) and M(H)

0 = −χ̃SH2 + 3ÃS − 3
2
BS2 +

9
2
CS3 + 2δ̃M2S + γ̃M2 (15)

0 = −H + αM + βM3 + δ̃MS2 + γ̃MS (16)

with Ã = A + H2(δ3 + (2/3)δ4) and χ̃S = χS for ψ = 0, and Ã = A + H2(δ3 +
(1/6)δ4) and χ̃S = (−1/2)χS for ψ = π/2. Actually there is a third possibility
for the orientation of n̂ and M with respect to the external field H: None is
parallel to another one, but all three lie in a common plane separated by the
angles ψ and φ (between M and H). These angles are determined by the relations
HM sin φ = (3/8)SM2(δ2S + 2γ) sin 2ψ = (3/8)SH2(δ4S − 2χS) sin 2(φ − ψ).
Again, S(H) and M(H) follow from equations of the form (15,16), where the
coefficients, however, are very complicated. Since such a case has not been found
in experiment, we will not discuss it further.

Obviously there is no solution of (15,16) with S = 0 and/or M = 0 for finite
magnetic field. Instead, even the high temperature phase shows a small but finite
nematic as well as magnetic order both induced by the external field. For the
transition to the ferromagnetic nematic phase, where M aquires a spontaneous
contribution in addition to the field-induced one, both jumps (in M and S) are
reduced (and shifted to higher temperatures) and eventually, above some strong
external fields, are replaced by smooth passages from low to high values (Fig.
2). This field dependence of S resembles the isotropic-nematic transition in the
presence of an external electrical field [24]. In conventional nematics this behavior
under an external magnetic field has never been observed, since the strong fields
necessary are outside the experimental reach, while in ferronematics the expecta-
tion is that the necessary magnetic fields are much smaller and thus this effect is
detectable.

The transition to the superparamagnetic nematic state (for positive coupling
coefficients δ1,2,3,4) is again characterized by a jump from small S to a larger value
of S, where the jump decreases with increasing field and eventually vanishes leading
to a smooth passage from a low S to a high S state. For large coupling coefficients
the transition temperature is shifted to lower values and at the transition the field-
induced value of M is reduced due to the coupling to S, either discontinuously (low
fields) or smoothly (large fields). For smaller coupling coefficients the transition
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temperature is almost field-independent and M hardly affected by the change of
S.

In an external magnetic field the superparamagnetic and the ferromagnetic
nematic phases are identical in their symmetry properties and differ only quan-
titatively in the value of M . Thus, a clear distinction is best made at vanishing
external field.
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