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Symmetry aspects in the macroscopic
dynamics of magnetorheological gels and
general liquid crystalline magnetic elastomers

Abstract: We investigate theoretically the macroscopic dynamics of various types
of orderedmagnetic fluid, gel, and elastomeric phases. We take a symmetry point of
view and emphasize its importance for a macroscopic description. The interactions
and couplings among the relevant variables are based on their individual symmetry
behavior, irrespective of the detailed nature of the microscopic interactions
involved. Concerning the variables we discriminate between conserved variables
related to a local conservation law, symmetry variables describing a (spontane-
ously) broken continuous symmetry (e.g., due to a preferred direction) and slowly
relaxing ones that arise from special conditions of the system are considered.
Among the relevant symmetries, we consider the behavior under spatial rotations
(e.g., discriminating scalars, vectors or tensors), under spatial inversion (discrim-
inating e.g., polar and axial vectors), and under time reversal symmetry (discrim-
inating e.g., velocities from polarizations, or electric fields from magnetic ones).
Those symmetries are crucial not only to find the possible cross-couplings correctly
but also to get a description of the macroscopic dynamics that is compatible with
thermodynamics. In particular, time reversal symmetry is decisive to get the second
law of thermodynamics right. We discuss (conventional quadrupolar) nematic or-
der, polar order, active polar order, as well as ferromagnetic order and tetrahedral
(octupolar) order. In a second step, we show some of the consequences of the
symmetry properties for the various systems that we have worked on within the
SPP1681, including magnetic nematic (and cholesteric) elastomers, ferromagnetic
nematics (also with tetrahedral order), ferromagnetic elastomers with tetrahedral
order, gels and elastomers with polar or active polar order, and finally magneto-
rheological fluids and gels in a one- and two-fluid description.

Keywords: dissipation function, ferromagnetic nematics, hydrodynamics, linear irre-
versible thermodynamics, magnetorheological fluids, reversible dynamics

*Corresponding author: Helmut R. Brand, Department of Physics, University of Bayreuth, Bayreuth,
Germany, e-mail: brand@uni-bayreuth.de
Harald Pleiner, Max Planck Institute for Polymer Research, Mainz, Germany, e-mail: pleiner@mpip-
mainz.mpg.de

Open Access. © 2020 Harald Pleiner and Helmut R. Brand, published by De Gruyter. This work is
licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/psr-2019-0109

mailto:brand@uni-bayreuth.de
mailto:pleiner@mpip-mainz.mpg.de
mailto:pleiner@mpip-mainz.mpg.de


1 General aspects of macroscopic dynamics

1.1 Macroscopic variables

In a microscopic dynamic description, all (or a very large number of) microscopic
degrees of freedom are taken into account. Macroscopic dynamics makes use of only
those rather few dynamic variables that are not relaxed to their equilibrium values on
long, macroscopic time scales. They come in three classes: (A) conserved quantities
that can only be transported and (B) symmetry variables, describing a spontaneously
broken continuous symmetry, e.g., a preferred direction that breaks orientational
symmetry, but whose orientation is arbitrary, cannot relax at all in the homogeneous
limit. Class A and B are the true hydrodynamic variables since for any excitation with
frequencyω andwave vector k, there isω→0 for k→0. Class (C)macroscopic variables
comprise all quantities that only slowly relax and therefore interact with the hy-
drodynamic variables on macroscopic time scales (where the many microscopic
degrees of freedom have already relaxed to their equilibrium values). There are no
general criteria to identify such macroscopic variables, and their existence depends
on the nature of the individual system.

Examples for conserved quantities are the mass density ρ (or individual mass
densities in amixture without chemical reactions), themomentum density gi, and the
energy density ε. Among the symmetry variables, we consider the nematic director ni,
the vector pi describing the orientation of a polar preferred direction, andmi denoting
the direction of a spontaneousmagnetization. In active systemswith polar order, e.g.,
moving bird flocks or fish schools, the preferred direction is given by the orientation fi
of an active nonzero velocity. In solid (elastic) media, translational symmetry is
broken and characterized by the displacement vector ui. Macroscopic variables are
the magnetization Mi in a magnetizable medium, relative velocities wi in a two-fluid
system (different constituents moving with two different velocities), and relative
rotationsΩi among different preferred directions or between a preferred direction and
rotations of an elastic body. In the framework of SPP1681 we have worked onmany of
these systems, which will be discussed in detail, in the following [1–15].

Throughout this chapter, we use the notationmi, gi, ni etc., to characterize vectorial
quantities, with indices i running from 1 to 3 in three dimensions. This is a standard
notation used in physical hydrodynamics [16].

The variables described above are space-time fields, e.g., ε(r,t), that live on
macroscopic time and length scales. In the Eulerian description, they are volume
densities (of the total quantities of the whole system). The basic assumption to derive
general equations for those variables is the applicability of thermodynamics. We start
with the local formulation of the first law of thermodynamics, which can be interpreted
as energy balance of the system. It relates changes of all the variables discussed above
to changes of the entropy density dσ
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dε � Tdσ + μAdA + ψB
k d∇kB + μCdC (1)

with T the temperature. The prefactors of the differentials are called (thermodynamic)
conjugates.

The energy density is assumed to be a scalar, meaning it does not change under
rotations. Thus, all the terms added up in Eq. (1) must be scalars. This is trivially
fulfilled for Tdσ and for μdρ, where μAdA→ μdρwith μ the chemical potential. If A is a
vector, like the momentum density, also μA has to be a vector connected by the scalar
product, μAdA→ vidgiwith vi the velocity. The B variables must not change the energy,
so their contribution in Eq. (1) already contains a gradient. As a consequence also their
conjugates must be vectors. Generally the B variables are vector-like quantities by

themselves, e.g., B→ni, with ψB
kd∇kB→ ψn

ikd∇kni. In the case of the nematic director,
external (electric or magnetic) fields are important and an additional contribution is

added, hnIi dni, where hnIi is due to the dielectric or diamagnetic anisotropy of the

nematic phase. Often the two contributions are combined into hni dni, with hni �
hnIi − ∇kψn

ik and ni belonging to class C.
Similarly, when the gradient of the displacement vector ∇kui is replaced by a

symmetric second-rank strain tensorUij, eliminating solid body rotations that must not
contribute to the energy density, Uij belongs to class Cwith μCdC→ΦijdUij, whereΦij is
the elastic stress tensor. For a thorough discussion of the relation of ui with Uij in the
nonlinear case, we refer to the study by Pleiner et al. [17].

For the magnetization Mi in a magnetizable system, we have μCdC→ hMi dMi with

hMi the internal magnetic field. In a ferromagnetic system,Mi =Mmi can be split into the
unit vector mi, denoting the direction of the spontaneous magnetization, which is a
class B variable with μBdB→ hmi dmi, and into the strength of magnetic orderM, a class
C variable with μCdC→ hMdM. For active polar order, Fi = Ffi, the direction fi is a class B

variable with μBdB→ hfi df i, while F relaxes to its constant stationary value provided by
the active entities of the system and is a class C variable. [18]. Relative rotations are
rotations of, e.g., the ferromagnetic direction δmi relative to rotations of the elastic
media, 2Ωij≡∇iuj−∇jui. They are linearly defined by Ωi = mjΩij−δmi and are class C

variables with μCdC→ LΩi dΩi. For a nonlinear definition of relative rotations, refer the
study by Menzel et al. [19].

The statics of a system is then given by the phenomenological relation between the
thermodynamic quantities and the variables. These relations involve static suscepti-
bilities, e.g., compressibility, specific heat, thermal expansion for the scalar variables,
Frank-type rank-4 tensors with Frank coefficients for B variables, and the elastic tensor
containing elastic moduli or a rank-2 rotational tensor for the C variables. An efficient
way of setting up these static relations is to use a phenomenological energy functional
of all variables, which is given as follows:

E � ∫dVε({σ,A,∇kB,C}) (2)
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from which the conjugates follow by variational derivation according to Eq. (1). The
crucial point is that the functional is restricted by symmetries, in particular space
inversion and time reversal symmetry.

Before we discuss these symmetries in the following, we give here the general form
of the dynamic equations for examples of the different classes of variables:

A    (∂/∂t)ρ + ∇kj
ρ
k � 0 (3)

A    (∂/∂t)gi + ∇jσij � 0 (4)

B    (∂/∂t)ni + Yn
i � 0 (5)

C    (∂/∂t)Uij + X(el)
ij � 0 (6)

C    (∂/∂t)Ωi + XΩ
i � 0 (7)

C    (∂/∂t)Mi + YM
i � 0 (8)

defining the mass current density j(ρ)k and the stress tensor σij for A variables and the
(quasi-) currents Yn

i and X(el)
ij , X(Ω)

i , and YM
i for the others. The A variables show a

divergence in the dynamics, while the B variables come with a gradient in the statics.
As an effect, both types of variables give rise to the truly hydrodynamic behavior,
ω(k → 0) → 0, while the C variables do not.

1.2 Spatial inversion symmetry: statics

In three-dimensional space, not only rotations but also spatial inversion, SI where
r→−r, is an important symmetry operation. Physical quantities behave differently
under SI, either they are invariant (“symmetric”, or “even”) with the signature ϵS � +1
or they change sign (they are “antisymmetric” or “odd”) with ϵS � −1. The signatures
ϵS � ± are the only possibilities since when inversion is applied twice, the original state

is regained, S2I � +1.
(True) scalar quantities have ϵS � +1, e.g., the variables ρ, σ, and ε, and also the

conjugates T and μ. (True) vectors are odd with ϵS � −1, in particular, the polarization
and the polar preferred direction, electric fields, and the gradient ∇i, as well as the
velocity-type quantities like gi, vi, but also a relative velocitywi. There is a different kind
of vectors, called axial vectors, that are evenunder SIwith ϵS � +1. Among them, there is
the vorticity 2ωi � ϵijk∇jvk, the magnetization Mi, and any magnetic field Hi. Relative

rotations Ωi are also axial vectors. Slightly more complicated is the case of nematic
order. Usually the director ni is treated as a vector with the additional constraint that all
equations involved are invariant under the replacement ni→−ni. Obviously, the di-
rector cannot be a polar vector and has to be treated as an axial one, as a necessary
condition. We note that the ni→−ni invariance is a stronger constraint.
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Since the energy density in Eq. (1) has ϵS � +1, the conjugates of A and C class
variables must have equal signatures, while for B class variables, the SI behavior of the
conjugates is opposite to that of the variables due to the gradient involved. For the
director, it means ψn

ij has ϵS � −1 but hni has ϵS � +1. Regarding the dynamics, Eqs.

(3)–(8), the time t is SI symmetric, and therefore, the quasi-currents of B and C class
variables have the same spatial signature as the appropriate variables. For A class
variables, this is opposite due to the gradient involved.

Depending on the symmetry of a given system, it can be SI symmetric (“centrosym-
metric”) or not. Prominent examples for the latter are chiral phases, like cholesteric liquid
crystals. Such phases show optical activity (rotation of the plane of polarization of light)
that is described by a pseudoscalar quantity q0 with ϵS � −1. The use of q0 in the
macroscopic dynamic equations exactly characterizes those contributions and couplings
that are specific for the chiral system and that would be forbidden in a achiral phase
without a q0. Well-known examples are the linear twist term in the Frank energy in
cholesterics that give rise to the helical ground state and the static couplings between
director rotations and, e.g., the thermal degree of freedom leading to the static Lehmann
effect [20], absent in the achiral nematic phase. The origin of the existence of a q0 can be
microscopic, when chiral molecules are present, or it is a result of a complicated internal
structure like in the smectic CB2 phase [21]. In the latter case, q0 and −q0 lead to two chiral
structures with opposite handedness but with the same energy for the ground state:
ambidextrous chirality [22].

The existence of a polar vector p0 also leads to a noncentrosymmetric phase, like
polar nematics [23, 24]. Again, the occurrence of p0 denotes those contributions that
would not be allowed in a centrosymmetric phase. Such a phase is not chiral.

A third possibility to break SI symmetry in a phase is due to the existence of
tetrahedral (or octupolar) order described by a third-rank tensor order parameter

Tij � ∑4
α�1n

(α)
i n(α)j n(α)k , where the n(α)i are the position vectors of the corners of a tetra-

hedron [25]. Tijk has ϵS � −1 since the n(α)i are true vectors. The hydrodynamic variables
related to tetrahedral order are the 3-D rigid rotations dΓi∼ϵipqTpkldTqkl of the Tijk
structure. This is a class B variable with ψB

kd∇kB→ ψΓ
ikd∇kΓi and

(∂/∂t)Γi + YΓ
i � 0 (9)

The variable Γi is SI symmetric as is the quasi-current YΓ
i , whileψ

Γ
ik is odd. Similar to the

nematic case, one can introduce a hΓi that contains ∇jψΓ
ij and is even under SI. There are

subtleties in the nonlinear regime due to the non-Abelian nature of three-dimensional
rotations, for details refer the study by Brand and Pleiner [26]. A phase that only
contains tetrahedral order is neither chiral nor polar. If there is additionally nematic
order (along a 2-fold symmetry axis of the tetrahedron), a D2d phase occurs that is still
not chiral (and not polar) but shows ambidextrous helicity [27]. Only when the tetra-
hedral structure is suitably combined with a biaxial nematic order, a chiral (but still

Symmetries and macroscopic dynamics 5



nonpolar) phase D2 can occur, where the q0 is due to the different preferred directions
involved [28]. Again, this is an example for ambidextrous chirality.

1.3 Time reversal symmetry

Under time reversal TR, where t→−t, all macroscopic quantities are either even (TR
symmetric) with ϵT � +1 or they are odd (TR antisymmetric) with ϵT � −1 since T2

R � +1.
There is no need to discriminate among theA,B,C case variables because the gradient is
TR symmetric, ϵT(∇i) � +1. The energy density is TR symmetric, and therefore, the
conjugates have the same TR signature as the variables, ϵT(e) � ϵT(Ce) for any variable
e with conjugate Ce. Examples for TR symmetric variables are ρ, σ, ni, pi, Uij, and Ωi, as

well as their conjugates μ, T, hni , h
p
i ,Φij, and LΩi . Odd quantities with ϵT � −1 are gi and

all types of velocities, including relative velocities and vorticity,Mi, and hMi , as well as
magnetic fields.

TR is closely related to the second law of thermodynamics. The latter states that
reversible, time reversal symmetric processes with ϵT � +1 must not change the en-
tropy – they are nondissipative, while irreversible processes with ϵT � −1 must in-
crease the entropy – they are dissipative. Therefore, one can uniquely split up any
current or quasi-current into a reversible (superscript R) and an irreversible part (su-
perscript D), e.g., for a variable e, the following equation can be written:

(∂e/∂t) + YR
e + YD

e � 0. (10)

If time is reversed, Eq. (10) reads (∂e/∂t) + YR
e − YD

e � 0. independent of the signature
ϵT(e) .

Thus, ϵT(YR
e ) � ϵT(e) and ϵT(YD

e ) � −ϵT(e). In particular,

ϵT(YR
e ) � ϵT(∂e/∂t) � { −1 for TR − even  e

+ 1 for TR − odd   e (11)

ϵT(YD
e ) � −ϵT(∂e/∂t) � {+ 1 for TR − even  e

−1 for TR − odd   e (12)

Among the reversible currents, σR
ij ,Y

MR
i are TR even with ϵT � +1, while jρRi , YnR

i , and

X(el)R
ij are odd, with ϵT � −1. On the other hand, the dissipative currents σD

ij , Y
MD
i have

ϵT � −1, while jρDi , YnD
i , and X(el)D

ij are even, ϵT � +1.
We add the entropy balance equation (which is a conservation law in the reversible

case) and the energy density conservation law to obtain the following equations:

∂σ/∂t + jσi � 2R/T (13)

∂ε/∂t + jεi � 0 (14)
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with the dissipation function R as the entropy source term. Putting all macroscopic
dynamic equations, including Eqs. (3)–(8), into the Gibbs relation, Eq. (1), one gets a
representation of the dissipation function in terms of the dissipative currents and
thermodynamic forces

2R � −jσDi ∇iT − σD
ij Aij + YnD

i hni + YMD
i hMi

+X(el)D
ij Φij + XΩD

i LΩ
i + YΓD

i hΓi > 0
(15)

Note that for case C variables, the thermodynamic forces are just the conjugates, while
for case A variables (the conserved variables), the forces are the gradients of the
conjugates 2Aij � ∇jvi + ∇ivj . Case B variables (symmetry variables) have been written

in the form of class C variables, e.g., with hni , the conjugate to dni, as force, rather than

using ψn
ij, the conjugate to d∇jni. There is no dissipative contribution ∼j ρDi since the

mass density current is the momentum density ρvi = gi, which is reversible.
In Eq. (15), pure divergence terms have been omitted since they do not contribute to

the total entropy production ∼∫RdV in the bulk. R is even under TR since in the opposite
case, one would get R < 0 for time reversed dissipative processes in contradiction to
thermodynamics.

The dissipation function R can be used as a potential for dissipative currents.
Within linear irreversible thermodynamics, with a linear relationship between currents
and forces, one can set up phenomenologically R as a harmonic function of the ther-
modynamic forces. The dissipative currents then follow by partial derivation of R with

respect to the forces. Examples are jσDi � − ∂ R/∂∇iT, YnD
i � ∂R/∂hni , and

X(el)D
i � ∂R/∂Φij. If R contains nonvanishing Φij contributions, e.g., ∼ΦijΦkl, the

resulting X(el)D
ij describes relaxation of the strain tensor. This is the hydrodynamic

description of viscoelasticity of non-Newtonian fluids or relaxing gels. In solids or
chemically bonded elastomers, only gradients of the elastic stresses act as forces, e.g.,
R∼(∇jΦij)(∇lΦkl), and the strains behave as conserved quantities (“permanent elastic-
ity”) showing diffusion rather than relaxation.

Generally, the dissipative currents are related to the forces by linear relations

YD
a � ζ DabFb (16)

wherea and bdenote the variables involved. By the very existence of the potentialR,ζ Dab
is symmetric, ζ Dab � ζ Dba . Of course, such relations have to fulfill the TR symmetry
properties discussed above, in particular, ϵT(ζ Dab) � ϵT(ab) . If the (dissipative) trans-
port parameter ζ Dab is constant or only depends on structural properties that are TR
symmetric, like the nematic director, only variables of equal TR signature can couple,
ϵT(a) � ϵT(b). On the other hand, if there is a TR-odd quantity present, like the
magnetization or a magnetic field, an odd power of them in ζ Dab leads to ϵT(ζ Dab) � −1,
and the variables a and b must behave oppositely ϵT(a) � −ϵT(b).
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For the reversible dynamics, there are somewhat different rules. Since the revers-
ible currents must not contribute to R, they have to fulfill the following equation:

0 � −j ρRi ∇iμ − jσRi ∇iT − σR
ijAij + YnR

i hni

+YMR
i hMi + X(el)R

ij Φij + XΩR
i LΩi

(17)

replacing Eq. (15) for the dissipative currents. Since the bilinear products of thermo-
dynamic forces and reversible currents add up to zero, there is no potential, fromwhich
the latter can be derived.

The reversible currents come in two parts, YR
a � Y0

a + Ỹ
R
a , where Y0

a are the non-

phenomenological, material-independent, symmetry-given contributions, and Ỹ
R
a are

the phenomenological parts characterized by (reversible) transport coefficients. The
former comprise advection, convection, and rotational covariant derivatives, in addi-
tion to, e.g., the isotropic pressure p and the Ericksen stress in the stress tensor, and
read as follows [2, 16, 29]:

jρ0i � ρvi (18)

jσ0i � σvi (19)

jε0i � (ε + p)vi (20)

σ0
ij � givj + δijp −Φij +ΦjkUik +ΦikUjk

+ 1
2
(ψn

ki∇jnk + ψn
kj∇ink)

(21)

Yn0
i � vk∇kni + ϵijknjωk (22)

YM0
i � vk∇kMi + ϵijkMjωk (23)

X(el)0
ij � vk∇kUij − Aij + Ukj∇ivk + Uki∇jvk . (24)

with p � −ε + μρ + Tσ + vigi + hMi Mi containing all extensive variables and their con-
jugates. The stress tensor has been symmetrized in order to guarantee angular mo-
mentum conservation using the condition that Eq. (1) is invariant under rotations and
that a divergence of an antisymmetric term is irrelevant [16]. All nonphenomenological
contributions together fulfill Eq. (17).

Concerning the phenomenological parts, we first note that j̃
ρR
i � 0 because

(∂ρ)/(∂t) + ∇igi � 0. For the other currents, one has to set up the linear current-force
relations explicitly

Ỹ
R
a � ζ RabFb (25)
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In accordance with Eq. (17), there must be a counter term Ỹ
R
a � ζ RabFa such that ζ Rab +

ζ Rba � 0 indicating antisymmetry with respect to a and b. Of course, the relation Eq. (25)

has to be invariant under TR with the result ϵT(ζ Rab) � ϵT(ỸR
aFb) or ϵT(ζ Rab) � −ϵT(ab)

due to ϵT(Fb) � ϵT(Cb) � ϵT(b). If ζ Rab is constant or only depends on structural prop-
erties that are TR symmetric, like the nematic director, only variables of opposite TR
signature can couple, ϵT(a) � −ϵT(b) . On the other hand, if there is a TR-odd quantity

present, like the magnetization or a magnetic field, an odd power in ζ Rab leads to

ϵT(ζ Rab) � −1 , and variables a and b of the same TR signature can couple. In such
systems, it is possible to have dissipative as well as reversible self-couplings (or cross-
couplings between two given variables), when the dissipative and reversible transport
parameters have different TR signatures. An example is (isotropic) heat conduction in

ferromagnetic systems, where jσRi � −κ∇iT and j̃
σR
i � −κTϵijkMk

∇jT [12]; we note that the
latter contribution also exists when linearized since in a ferromagnetic system <Mi>≠0.

Time reversal symmetry is often overlooked and sometimesmistreated as shown in
the study by Brand et al. [1, 11].

1.4 Spatial inversion symmetry: dynamics

Of course, spatial inversion SI is relevant for the dynamics aswell. From Eqs. (3)–(8),
we deduce that the physical currents of class A variables (e.g., jρi and σij) have an SI
signature opposite to that of the variables, ϵS(ja) � −ϵS(a), while for all other var-
iables, the quasi-currents have ϵS(Ya) � +ϵS(a) . This applies to the reversible parts,
as well as well as to the irreversible ones. Writing the second law of thermody-
namics in the form of Eqs. (15) and (17), the forces for class A variables are gradients
of the conjugates (defined in Eq. (1)) with the result ϵS(Fa) � −ϵS(Ca) � −ϵS(a) ,
while for the other variables, the forces are just the conjugates resulting in
ϵS(Fa) � ϵS(Ca) � ϵS(a).

For the dissipative and reversible transport parameters ζ (D,R)ab defined in Eqs. (16)

and (25), this implies ϵS(ζ ab) � +ϵS(ab) for all types of variables. Thus, if ζab is a
constant or only depends on structural properties that are SI symmetric, like the
nematic director, only variables of equal SI signature can couple, ϵS(a) � +ϵS(b). On
the other hand, if there is a SI- odd quantity present, like the pseudoscalar q0 or the
tetrahedral order Tijk, an odd power of those in ζab leads to ϵS(ζ ab) � −1, and the
variables a and b must behave oppositely ϵS(a) � −ϵS(b). Examples are the dissi-
pative dynamic Lehmann effect in chiral systems, where, e.g., temperature gradi-
ents (polar vectors) can couple to director rotations (axial vectors) [11, 30] and flow-
induced reversible (heat) fluxes in tetrahedral systems, where the nonpolar Aij

couples to the polar vector jσRi [31].
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2 Nematic order and magnetism

2.1 Isotropic and uniaxial magnetic elastomers and gels

Isotropic ferrogels are systems without a preferred direction combining the properties
of a gel and of a conventional magnetic liquid. The hydrodynamic description of
isotropic ferrogels has been presented in the study by Jarkova et al. [32]. Quite recently,
a continuum model for ferrogels from an engineering perspective has been developed
[33]. In parallel microscopic studies of the field-controlled change of shape and elas-
ticity of magnetic gels using particle-based simulations have been advanced; these
developments have been elucidated in the study byWeeber et al. [34]. A large effort has
been dedicated to the mesoscopic characterization of magnetic hybrid materials such
as magnetic gels and elastomers over the last few years, compare, for example, the
study by Menzel [35] for a recent review. Important progress along these lines has been
achieved for the tunable dynamic moduli of magnetic elastomers on the mesoscale by
combining experimental data from X-ray tomography with coarse-grained dipole –
springmodeling [36]. From an applied point of view, there has been a special emphasis
on themagnetic field–controlledmechanical behavior of magnetosensitive elastomers
in applications for actuator and sensor systems [37].

Uniaxialmagnetic gelswith a permanentmagneticmoment have been synthesized
by performing the cross-linking process in an external magnetic field [38] and after-
ward characterized with respect to their optical, magnetic, and mechanical properties
[38]. For the hydrodynamic description of uniaxial magnetic gels and elastomers, we
refer to the study by Bohlius et al. [39]. In the study by Menzel [40], it has been
demonstrated how one can bridge the scales from particles to macroscopic length
scales in a uniaxial magnetic gel. Very recently, the structure and the magnetooptical
response of anisotropic fibrillous organoferrogels with mobile magnetic nanoparticles
have been investigated [41]. While in this study nomagnetic hysteresis has been found
but an optical hysteresis is detected, revealing a complex interplay between the gel and
the mobile magnetic particles [41].

2.2 Magnetic nematic elastomers and gels

Nematic elastomers with a magnetic degree of freedom are described by the director,
the strain field, relative rotations between director and elastic rotations, and by a
magnetization variable that is zero in equilibrium [2]. We concentrate here on the
magnetic effects. There are reversible dynamic couplings between director rotations

and the magnetization dynamics, (∂ni/∂t) ∼ hMj and (∂Mi/∂t) ∼ hnj , and similarly be-

tween relative rotations and the magnetization, (∂Ωi/∂t) ∼ hMj and (∂Mi/∂t) ∼ LΩj , all

with reversible material tensors of the form ∼ϵijknk. The symbol ∼ in the relations above
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indicates that the vectorial quantities on the left and on the right hand side are con-

nected by second-rank tensors. It is the different TR signature of the variables involved

and the antisymmetry of the material tensors that allow these couplings. Applying an

external magnetic field, rotations of the director and relative rotations are induced

(through hMi ). Through similar reversible couplings, external shear flow induces rela-

tive rotations.
In ordinary nematics flow alignment of the director is a prominent feature: shear

flow rotates the director at a finite angle w.r.t. the flow direction. This angle is inde-
pendent of the shear rate Σ and depends on a reversible flow parameter. In the present
case, shear flow also induces relative rotations, which induce a magnetization, and
finally, all three variables, ni, Ωi, and Mi are oriented, independent of the shear rate.
Only the magnitude of the magnetization and the relative rotations are proportional to
Σ. Since the system is elastic, the shear rate has to be oscillatory, Σ cos(ωst). Since there
is static coupling between relative rotations and strains, the relative rotations show a
phase shift compared to the shear rate indicating that in this complicated system, flow
alignment is no longer a pure reversible feature.

If a chiral agent is added or a chiral nematogenic molecule is used, a chiral
magnetic nematic elastomer or gel is obtained [3]. The only new structural element
compared to the achiral case is the pseudoscalar q0 that is odd under SI. A well-known
consequence is the occurrence of a linear (nematic) twist term in the energy density
functional, giving rise to a helical ground state, as well as bilinear coupling terms
between twist and temperature and density changes and strains. The latter describe the
temperature, density, and strain dependence of the helical pitch. They also give rise to
the static part of the Lehmann effect. Note that there are no static couplings to changes
of the magnetization due to the odd TR signature of the latter.

In the dynamics, the presence of q0 allows couplings between polar currents and

axial forces (and vice versa) like, e.g., jσRi ∼ q0h
M
j and YMR

i ∼ q0∇jT . Applying a tem-

perature gradient along the helical axis,∇zT, the growth ofMz is induced that saturates

into a finite stationary magnetization, M(stat)
z ∼ q0∇zT. Instead of the temperature

gradient, also an external electrical field can be used, thus creating an electric field–
induced magnetization [3]. The elastic degree of freedom is irrelevant for these effects.

2.3 Ferromagnetic nematics

Ferromagnetic nematic liquid crystals are fluids with two different kinds of internal
order, a nematic one due to the ordering of standard nematogenic molecules and a
ferromagnetic one due to the ordering of magnetic nanoplatelets made of complicated
iron oxide compounds. Such suspensions have been realized byMertelj et al. [42, 43]. In
equilibrium, the two preferred directions ni and mi are parallel. Thus, there is an
energetic penalty, A2[(n⋅m)2−1], for deviations from the ground state. In addition, there
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are various (reversible and irreversible) dynamic couplings of these two variables. The
full hydrodynamic description for ferromagnetic nematics has been given in the study
by Potisk et al. [9], which is a generalization of an earlier work [44] on “ferronematics”,
i.e., magnetic nematic liquid crystals without permanent magnetization. From a
microscopic point of view, the study of the structure and rheology of hybridmixtures of
magnetic nanoparticles in liquid crystals using particle resolved simulations has
started a few years ago. Quite recently, the focus in this area has been on the transport
properties in liquid crystal-magnetic colloid mixtures [45].

A particularly interesting cross-coupling is the (simplified) dissipative dynamics
[8, 44]

YnD
i � 1

γ1
hni + χDij h

m
j (26)

YmD
i � bD

⊥h
m
i + χDji h

n
j (27)

with the symmetric material tensor χDij � χD2mknk(δij − ninj) . The crucial point for its
existence is that χDij is odd under TR, as well as under the replacement ni→−ni. For the
experiment considered below, the force hni is due to the Frank rotational elastic energy
and a surface anchoring energy, while hmi describes the orienting force of an external
field on a ferromagnet; of course, both forces contain contributions from the A2 energy
given above.

In the studies by Potisk et al. [8, 9], magnetooptic response experiments are
described. On a sample of homogeneous structure n∥m, a field is applied perpendic-
ularly that rotates the magnetization toward the field direction. Due to the coupling
between m and n, also the director starts to rotate, which is hindered by the surface
anchoring and the subsequent deformation of the director field. Finally, a stationary
state is reached that depends on the field strength. Sending light through the sample
(along the field direction), using a polarizer and analyzer, the measured phase shift
between the ordinary and extraordinary beams allows to monitor the final director
orientation, as well as the switching dynamics. It turns out that the director relaxation

(γ1) and the magnetization relaxation (b D
⊥ ) alone are not sufficient to describe the

results, but a nonzero χD2 is mandatory. Indeed, χD2 turns out to be rather large of the
order of γ1. This is a clear indication that, in such complicated systems, dynamic cross-
couplings are important.

There is a reversible counterpart, χRij � χRϵijknk, which is even under TR and leads to

a vanishing entropy production due to the antisymmetry of ϵijk . The effect of adding
those terms to Eqs. (26) and (27), not yet detected experimentally, would be an out-of
plane rotation of the director [9].

Another area to detect the complexity of ferromagnetic nematics is flow. In ordi-
nary nematics, there are basically two flow effects, viscosity and flow alignment due to
a reversible coupling between (symmetric) shear flow and director rotations. In

12 Harald Pleiner and Helmut R. Brand



ferromagnetic nematics, there are additional cross-couplings possible due to the odd
TR signature of the magnetization. In particular, there are dissipative couplings be-
tween flow and the nematic and magnetic forces, hni and hmi , and a reversible one

involving hmi and a reversible version of the viscous coupling [10]. As a result, the
velocity profile in a (simple) shear experiment generally deviates from linearity, when a
field is present, and effective viscosities become field dependent increasing by a factor
up to two in accordance with experiments [46]. In ordinary nematics, there are 3
Miesowicz viscosities according to the three possibilities to fix the director relative to
the shear geometry (along the velocity field, along the velocity gradient, and perpen-
dicular to both). In ferromagnetic nematics, there are nine different ways to fix inde-
pendently (by different external fields) the orientation of n andm relative to shear flow.
Due to the various couplings among the variables, these effective viscosities are rather
complicated functions of the reversible and irreversible transport parameters involved
[10].

2.4 Ferromagnetic nematics with tetrahedral order

When tetrahedral order is added to ferromagnetic nematics, three preferred structures
exist – the nematic director ni, the magnetization mi, and the tetrahedral structure Tijk
(for the latter, refer the study by Fel [25] and the discussion around Eq. (9)). The
interesting point in this situation is that mi and Tijk have opposite symmetry proper-
ties,ϵS � +1 ϵT � −1, and ϵS � −1 , and ϵT � +1, respectively. We will only consider the
case where the director is fixed to be parallel to one of the 2-fold symmetry axes of Tijk.
This is the structure of aD2d phase [26]. The hydrodynamic variables are the rotations of
the director and the rotation of the tetrahedral structure about the director. Rotations of
the magnetization are independent degrees of freedom, but due to an energetic
coupling between ni and mi, the two directions are parallel in equilibrium, and the
phase is uniaxial. For the full hydrodynamics of such a phase, refer the study by Potisk
et al. [12].

In the statics, the most prominent feature in the D2d phase is the linear gradient
term in the energy density ∼Tijkni∇jnk. It favors helical structures of ni and Tijk (about a
second, perpendicular 2-fold tetrahedral symmetry axis). For the magnetization, there
is an analogous linear gradient term, ∼Tijkmi∇jmk. The sum of the two linear terms
favors a combined helical structure of ni andmi (and Tijk), thereby preserving ni andmi

remaining parallel. Since the phase is achiral (there is no pseudoscalar quantity pre-
sent), this is ambidextrous helicity.

In the reversible dynamics, there are very special couplings that only exist since all
three ordered structures are involved. An example is the coupling between the thermal

degree of freedom and director rotations, jσRi � ξTnij h
n
j and YnR

i � ξTnji ∇jT. Here, ξTnji
contains linearly nk, ml, and Tpqr, thereby accommodating the ni→−ni invariance,
ensuring the reversibility of the currents (due tomi), and compensating for the polarity
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of the heat current and the temperature gradient (due to Tpqr). Since ξTnji is symmetric,

the two contributions to Eq. (17) cancel as required.
In the dissipative dynamics, themagnetization couples, e.g., to the thermal degree

of freedom, jσDi � ψTD
ji hmj and YmD

i � −ψTD
ji ∇jT. Here, ψTD

ji contains linearlyml (ensuring

the irreversibility of the currents) and Tpqr (compensating for the polarity of the heat

current and the temperature gradient). SinceψTD
ji is symmetric, the two contributions to

Eq. (15) are equal and add up as required. They describe that rotations of the magne-
tization create heat currents, while temperature gradients drive the dynamics of the
magnetization.

3 Elasticity with nonnematic order

In this section, we discuss various elastic systems that show either a polar preferred
direction or an ordered tetrahedral structure – finally together with a permanent
magnetization. Differences can be traced back to the different symmetry signatures of
the order parameters involved.

3.1 Polar and active polar gels

If in a nematic liquid crystal the director ni is replaced by a polar vector pi, the direction
of a permanent polarization, a polar (nematic) phase results. Due to the different
symmetry properties, ϵS(ni) � +1 and ϵS(pi) � −1, the polar phase behaves differently
compared to the nematic one. In particular, polar phases tend to form splay textures
[23] due to a linear splay term ∇ipi in the energy functional. Neither in nematics nor in
ferromagnetic systems linear splay (∇ini or ∇imi) is possible.

In the study byBrand et al. [5], the hydrodynamics of polar gels is given. It turns out
that the reversible dynamics is isomorphic to that of nematic gels [47] and need not to
be repeated here. In the statics, there is the standard piezoelectric coupling between
polarization and strain. Here, in the uniaxial case, it contains three static suscepti-

bilities. There is another static coupling between polar textures and elasticity, ψp
ij ∼ Ukl

andΦ(el)
ij ∼ ∇kpl , withψ

p
ij ≡ (∂ε)/(∂∇ipj). Relative rotations between pi and the network,

Ωi ≡ δpjΩij − δpi, couple to bend distortions of the polarization, LΩi ∼ δ ⊥
ik pj∇jpk

and ψp
ij ∼ δ ⊥

ik pjΩk. This effect is not possible in nematic gels (because of the ni→−ni
invariance) and neither in ferrogels (due to ϵT (mi) � −1).

Variants of polar ordered systems are active polar ones, where biological entities
(e.g., fish schools, bird flocks, locust swarms, bacteria, etc.) move coherently in a
specific direction, without a head to tail symmetry. The preferred direction is given by
the velocity, Fi = Ffi, of the active entities. If the movement stops, also the order
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vanishes. To maintain the active velocity, the entities have to provide energy. This
energetic intake is dissipated in the system and defines a nonequilibrium state with
F = F0. Nevertheless, it can be described in the usual hydrodynamicway just adding the
driving force [18].

In the studybyPleiner et al. [4],we investigateanactivepolar, viscoelastic systemwith
a relaxingelasticity, as, e.g., occurs inmovementsof bacteria colonies in agel background.
The additional variables are the relaxing strain tensor Uij, rotations of the preferred di-
rection, δfiwith fiδfi = 0, relaxation of F (toward F0), and relative rotations between fi and
the network,Ωi = fjΩij−δfi. Note thatΩi has the same symmetry signatures as fi. Apart from

the active velocity, there is also a passive one, v(1)i , describing movements of the passive
background. In such a two-fluid system, the question arises, with which velocity a given
variable is convected or transported (Eqs. 18–24). It turned out that there is no general
principle to answer this question, and generally, those transport or convection velocities
arematerial dependent, containingpassiveandactiveparts [48, 49]. Ina linearizedpassive
dynamics, the transport terms drop out, but in the active case, with a constant active
velocity in the stationary state, even the linearized theory contains transport etc. due to the
active velocity, and this active transport is an important part of the dynamics.Wemention
that sometimes a polarization vector is used to describe active transport [50], but due to the
different TR signature of the polarization compared to a velocity, the transport becomes
"irreversible" violating thermodynamics and opening up an unphysical dissipation
channel [4].

Results involving the active polar order and the elasticity are coupled relaxations
of compressional strains, Uzz, with F and shear strains Uxz with relative rotations Ωx,
where F relaxes to F0 and the other quantities to zero. The sound spectrum of a
dynamical system is another important aspect of the physics involved. In simple fluids,

one has (ordinary) sound with ω2 � c21k
2 , with ω and k being the frequency and wave

number of the linear excitation, respectively. It is purely reversible, and dissipation
only enters at higher k-orders. If in addition the active velocity is taken into account, a
second sound excitation arises that is coupled to the first one. However, the full sound
spectrum is generally no longer invariant under ω→−ω, indicating a nonequilibrium
situation [18]: In the stationary state, wave propagation parallel or antiparallel to the
active velocity is different. The elastic degree of freedom gives, by coupling to flow,
another sound-like excitation (shear elastic wave) that couples to the other sound-like
excitations. However, in the present case, elasticity is relaxing, and dissipation does
not come at higher k powers but is already present to order k0, which makes the final
sound spectrum for this material very complicated [4].

3.2 Tetrahedral and ferromagnetic tetrahedral gels

In the study by Brand and Pleiner [6], we consider tetrahedral gels and elastomers, i.e.
elastic media with a tetrahedral ordered structure described by the rank-3 tensor Tijk
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(already discussed above). A liquid phase that only contains tetrahedral order, Td, is
optically isotropic since the rank-2 dielectric tensor cannot couple to Tijk. When combined
with (isotropic) elasticity, a εTd phase arises. Although the time reversal and space
inversion properties of polarization and tetrahedral order are the same, the properties of
εTd are quite different from the polar (nematic) phase. One reason is that Tiik = 0 and εTd is
apolar. On the other hand, the rank-3 properties of Tijk allow for specific couplings to the

elastic tensors, in particular, jσDi ∼ TijkΦ(el)
jk and X(el)D

ij ∼ Tijk∇kT describe a dissipative

coupling between elasticity and the thermal degree of freedom. The specific aspect of this
coupling lies in thegeometry– elastic shear stresses induceaheat currentperpendicular to
the shear plane, and a temperature gradient induces growth of perpendicular elastic shear
strains. For a relaxing elasticity, this results finally in a stationary induced strain. Out-of-
plane phenomena are characteristic for tetrahedral order.

If chirality is present (due to apseudoscalarq0), a Tphase occurs in the liquid case [28]
and a εT in the elastic case. The combination q0Tijk gives a SI-positive rank-3 tensor that
allows, particularly, couplings of the elastic degree of freedom with rotations of the
tetrahedral structure, δΓi, and with relative rotations, Ωi, (in the statics and in the dissi-
pative dynamics) and with flow (in the reversible dynamics). Here, Ωi � ϵijkΩjk − δΓi
means rotations of the tetrahedral orientation with respect to the elastic medium.

If a tetrahedral gel or elastomer is in addition ferromagnetic, the different time
reversal and space inversion signatures of the tetrahedral structure and the permanent
magnetization allow for a very rich hydrodynamic theory [13]. We assume the
magnetization to be rigidly connected to one of the 2-fold symmetry axes of the
tetrahedral structure. This preferred direction is taken as the z-direction. Relative ro-
tations here mean combined rotations of mi and Tijk relative to the elastic network.

We concentrate on the interplay of elasticity and magnetization in the presence of
tetrahedral order. First, shear strains create (statically) magnetization patterns
∇zmx∼Uyz and ∇zmy∼Uxz with the magnetization perpendicular to the shear plane.
Compressional strains lead to magnetization patterns in the perpendicular plane
(∇xmy + ∇ymx)∼Uzz. This should not be mixed up with the standard magnetostriction,
where compressional strains Uzz or Uxx + Uyy result in changes of the magnitude of the
magnetization, δM/M0. In addition, there is an indirect coupling of temperature gra-
dients to elastic shear stresses, mediated by relative rotations, such that ∇xT and ∇yT

create Φ(el)
yz and Φ(el)

xz , respectively.

In the case of a transient network, a temperature gradient along the preferred axis
triggers temporal changes of the strains, which finally result in a stationary elastic

shear stress, Φ(el)
xy , in the perpendicular plane. This is due to a reversible as well as an

irreversible coupling. In addition, there are also planar compressional stationary

strains (Φ(el)
yy � −Φ(el)

xx ) due to reversible couplings.

The transverse directions x and y introduced in the previous paragraphs are not
determined without a suitable external force. The system is uniaxial and transversely

16 Harald Pleiner and Helmut R. Brand



isotropic, optically. Of course, the tetrahedral structure has a fourfold (improper)
symmetry, only in optical measurements this cannot be detected. However, if one
applies the external temperature gradient perpendicularly (e.g., ∇xT), the transverse

isotropy is broken, which can be detected optically. Measuring the ratio Φ(el)
yz /Φ(el)

xz of

the induced stationary elastic strains, one gets the orientation of the transverse
tetrahedral structure relative to the externally defined x-direction [13].

4 Magnetorheological fluids

4.1 A minimal hydrodynamic model

In the study by Potisk et al. [14], we discuss a simple, minimal model to describe the static
and dynamic properties of magnetorheological fluids (MRFs). The main ingredient is
transient elasticity (relaxing strain variable) that is induced by an external magnetic field.
Wemodel this by assuming the elastic moduli and the relaxation times to be proportional
toM2, whereMi is themagnetization, which is zero in equilibrium and in the absence of an
external field. Obviously, this description can only be applied to small and intermediate
fields, since for high fields there are saturation effects and the elastic moduli will not grow
indefinitely. Important is also magnetostriction that provides a static coupling between
elasticity andmagnetization. In order tomake thismagnetorheologicalmodel as simple as
possible, thermal and concentration effects have been neglected, e.g., disregarding tem-
perature gradients and sedimentation. Isotropy of the material properties is assumed,
thereby also eliminating relative rotations as variables.

From the symmetry point of view, this model is like a magnetic, viscoelastic sus-
pension. The most important aspects are not due to symmetry reasons but come from
internal material properties, like the tendency of the magnetic particles to form chains
(and induce elasticity) in the presence of external fields. Another example for a special
internal material property is the field dependence of the viscosity in some magnetic
fluids [51]. The influence of this property on the threshold behavior in thermal in-
stabilities has been investigated theoretically in the study by Pérez et al. [7].

The material is assumed to be within two parallel plates with the magnetic field
Hi= δizH0 perpendicular to them. First, we have applied thismagnetorheologicalmodel
to external static shear deformations (strains) Sij = Sδizδjx. The two forces applied lead to
three coupled nonlinear equations for the elastic shear stress, Ψxz, the magnetization
parallel to the field, Mz, and the component Mx perpendicular to the external field
(compare Eqs. 29–31 in ref.[14]). Analysis of these equations shows that all three
quantities are nonvanishing as a consequence of themagnetostrictive coupling (in this
geometry and with two external forces) of Mx, Mz, and Ψxz in the energy, as well as in
the resulting minimizing equations. The resulting elastic shear stress, Ψxz, is propor-

tional toH2
0 and initially grows linearly as a function of S, then reaches amaximum (the
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“static yield stress”) at a field-independent yield strain, and diminishes beyond. This is

the unstable region, where elasticity breaks down and gives way to a liquid-like

response. The tilt of the magnetization, characterized by a nonzeroMx, increases with

S. If a normal pressure is applied additionally, the system becomes more rigid, and the

static yield stress (as well as the appropriate yield strain) increases considerably. These

effects are qualitatively in accordance with experiments.
Under external shear flow,vx � γ̇z with shear rate γ̇, one has to consider the full

dynamic equations for the magnetization, the elasticity, and flow. The most important
cross-coupling is between themagnetization andflow. It comes in twoparts, the first is the

convection term ϵijkMjωk for Ṁi in Eq. (23) and the second is a phenomenological

contribution to the magnetization current YMR
i ∼ cRijkAjk. Both contributions are reversible

since cRijk contains anoddnumber ofMi factors. The shear part of the latter, cR2 , is the analog

to the flow alignment parameter in nematic liquid crystals and has been given in the
context of ferrofluids in the studies byMüller andLiu [52] andMüller et al. [53]. The counter
terms, necessary to guarantee zero entropy production, then enter the full stress tensor, σij,
in addition to the viscous stress due to the external flow and the elastic stress.

For stationary shear flow, where γ̇ � γ̇0 is a constant, the full stress tensor shows, as a
function of γ̇0, a steep increase up to, what is called the dynamic yield shear stress, beyond
which the increase is much slower. The dynamic yield shear stress increases quadratically
with the external fieldH0. The behavior at higher γ̇0 shows shear thinning and therefore fits
better to a Casson or Herschel-Bulkley model [54], rather than to the standard Bingham
model.

For oscillating shear flow, γ̇ � γ̇0cosωt , the linear response of the system is described
by a complex shear modulus, G = G′+ iG″, whose real and imaginary parts describe the
reactive (reversible) and dissipative response, respectively. As a function of the frequency,
the storage modulus G′ increases quadratically until it reaches a constant plateau value.
The loss modulusG″ increases linearly up tomaximum and decreases until a minimum is
reached and finally grows linearly again according to a simple viscous behavior. These
features correspond fairlywell to experimentalfindings [55, 56]. The shearmodulus |G| can
exhibit two plateaus, at low and at intermediate frequencies, related to the two relaxation
processes involved, strain relaxation and magnetic relaxation. The Cox-Merz rule, an
empirical law relating nonlinear stationary to linear high frequency properties [57, 58], is
often fulfilled in polymer dynamics but not in our model of MRFs. The difference is
probably due to the fact that the columnar structure is destroyed under large steady shear
but not when small amplitude oscillatory shear is applied.

4.2 A two-fluid description

In the minimal model of MRFs, we have used only one velocity field to describe the
dynamics of all variables. Similar to the case of suspensions of large particles or in the
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dynamics of phase separation, we allow in a two-fluid description [15] macroscopic
movements of the magnetic particles relative to the background fluid. Therefore, we
introduce two density variables, ρ1 and ρ2 (as in a binary mixture), and two momenta

g(1)i � ρ1v
(1)
i and g(2)i � ρ2v

(2)
i . Compared to the minimal model, there are now two new

variables, the concentration ϕ = ρ2/ρ and the relative velocitywi � v(1)i − v(2)i that come
together with the conserved variables, total density ρ = ρ1+ρ2 and total momentum

gi � g(1)i + g(2)i . The concentration is even under TR and SI, while the relative velocity is
odd under both.

This two-fluid description is different from the case of active polar gels in Section
3.1, where the second velocity is related to a broken symmetry and hence a class B
variable. Here, the relative velocity wi is simply a slowly relaxing variable of class C
with the conjugate hwi (μCdC → hwi dwi) and the balance equation (∂/∂t)wi + Yw

i � 0. The
conjugate quantity to ϕ is the osmotic pressure Π and the (linearized) dynamic

equation reads ρ0(∂/∂t)ϕ + ∇ij
ϕ
i � 0 (for the general case, refer the study by Pleiner

et al. [15]). The conjugates hwi and have the same symmetry signatures as wi and ϕ,

respectively. The currents jϕi and Yw
i are odd under SI, while the second law of ther-

modynamics requires jϕRi and YwD
i to be odd under TR and jϕDi and YwR

i to be even.
The general problem of any two-fluid theory regarding the form of the transport

velocities, e.g., how to generalize Eqs. 18–24, cannot be discussed here but refer the
studies by Pleiner and Harden [48, 49]. However, as part of our two-fluid model of

MRFs, we choose velocity v(1)i to transport or convect the variables ρ1 and g(1)i , while for

the magnetization Mi and the strain Uij, we take v(2)i (and heat is transported by the
mean velocity vi = gi/ρ). In Pleiner et al. [15], we show how this choice fits well into the

general scheme without violating any thermodynamic rule, if one requires v(c)i �
(ρ1/ρ)v(2)i + (ρ2/ρ)v(1)i to be the transport velocity for ϕ and wi.

In the statics, wi ∼ hwi and does not couple to other degrees of freedom (in a line-
arized description), while the concentration couples to the magnetization and the

(trace of the) strain, δ Π   ∼ (2χmM0
i δMi + χ̃uδUkk), and the counter terms (tomake sure ε

is a potential) are hMi � 2χmM
0
i δϕ andΦij � 2χ̃uδijδϕ , with χ̃u � M2

0χu in accordancewith
the similar form of the elastic moduli.

In the dynamics, the relative velocity reversibly couples to the magnet-

ization,YwR
i � ξ ijk∇jh

M
k and XMR

i � ξ kji∇jh
w
k , with ξijk containing only odd powers ofMi,

as well as irreversibly, YwD
i � −∇j(γjikhMk ) and XMD

i � γkji∇jh
w
k , where γijk is even in Mi.

The relative velocity also couples to flow YwD
i � −∇j(ν(c)jiklAkl) and σD

ij � −ν(c)ijkl∇lh
w
k , where

ν(c)ijkl is even in Mi. The concentration couples to magnetization, jϕDi � −αkij∇jh
M
k and

YMD
i � −∇k(αijk∇j Π), where αijk is odd in Mi in order to be dissipative.

A direct comparison with the one-fluid model can be made for a stationary shear
flow in the parallel plate geometry. Assuming as boundary conditions at the moving
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plate for the background flow, v(1)x � Γx, for the particle phase, v(2)i � 0, and for the
strain, ∇zUxz = 0, one finds a nonzero and asymmetric relative velocity field wx, whose
maximum depends on the external shear strain rate Γx in a complicated way. As a

result, the flow profile (of v(1)x ) in the flow channel is not linear (in contrast to the one-
fluid case). In addition, the stress-strain relation, although quite similar to the one-fluid
case for small and large Γx, differs for intermediate Γx values, in particular, the
somewhat unphysical overshoot present in the one-fluid case is no longer there. The
introduction of a two-fluid description considerably improves the quality of the
macroscopic model.

Bridging the gap betweenMRFs and softmagnetorheological gels, wewould like to
refer to the recent review of the understanding of the interplay between single particle
motion, internal deformation, and matrix properties, in particular, concerning the
buckling of chains and the matrix deformations around inclusions [59].

5 Summary and perspective

In this compact review, we have first outlined the approach of macroscopic dynamics
based on the use of linear irreversible thermodynamics and the behavior under sym-
metry operations including inversion, time reversal, and rotations. The variables of
interest come in three groups: conservation laws, variables associated with sponta-
neously broken continuous symmetries, and macroscopic variables, which relax on a
sufficiently long time scale to be of hydrodynamic interest.

One field covered is the interaction of nematic order with magnetism. It includes
the description of isotropic and uniaxial magnetic elastomers and gels, as well as
ferromagnetic nematics, as they have become available experimentally a few years
ago. Stimulated by this progress, we also investigated the effect of additional tetra-
hedral/octupolar order. Another related topic is the study of elasticity with nonnematic
order including polar and active polar gels, as well as tetrahedral and ferromagnetic
tetrahedral gels.

To examine the effect of larger particles in a carrier fluid, we have presented a
minimal one-fluid model of MRFs, the results of which are in accord with a large body
of experimental literature. To account for segregation effects between the carrier fluid
and the particles, we generalized our approach very recently and gave a two-fluid
description of MRFs.

As a perspective, we just mention two classes of systems for which the presented

approach will be useful. One is the field of active magnetic gels and elastomers. Quite

recently, it has become clear that magnetotactic bacteria fall into this class of systems.

Another direction for the near future is the study of fluid- or gel-like systems, which

show simultaneously magnetic and electric order. We are thinking, for example, of a

system, which is ferroelectric and ferromagnetic simultaneously. Candidates are the
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ferromagnetic nematic liquid crystals already existing with a solvent, which contains
ferroelectric particles. One might thus obtain a liquid multiferroic system with three
types of order: ferromagnetic, ferroelectric, and nematic.
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