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We investigate the onset of electroconvection in freely suspended SmC∗-liquid crystal films.
Compared to nematic liquid crystals the SmC∗ phase shows in addition a macroscopic electric
polarization within the smectic planes. Describing the SmC∗ film by a 2-dimensional theory we
find for low and high frequencies of the applied electric AC field, respectively, a conductive and
a dielectric instability regime, similar to the case of electroconvection in nematic liquid crystals.
Because of the polarization in the SmC∗ phase an additional, new “subharmonic regime” appears at
intermediate frequencies, where all the hydrodynamic and electric variables are moving with half the
frequency of the applied AC voltage at the onset of convection. For some special but experimentally
accessible values of material parameters, geometric dimensions and AC voltage frequency also a
codimension-3 point is found, where the threshold voltages of all three possible regimes coincide.

For DC voltages the generalized Frederiks transition is presented and discussed as far as it restricts
the observation of pattern forming convective instabilities. Both types of instabilities are investigated
for DC voltages to get a fundamental insight into the mechanisms involved as well as for AC voltages
to stimulate experiments.

PACS numbers: 47.20, 61.30

I. INTRODUCTION

Over the last 20 years of enormous progress in pattern
formation, fluid systems have been used as variable model
systems, which allow for quantitative investigations far
from equilibrium (see e.g. [1–3]). In the last decade liquid
crystals became a paradigm of anisotropic fluids showing
pattern forming instabilities (see e.g. [4–6]). Electrocon-
vection (EC) in planarly aligned nematic liquid crystals is
one of these intensively investigated anisotropic systems
[5–8].

In chiral smectic liquid crystals (SmC∗) a macroscopic
polarization exists and SmC∗ can also be prepared as a
quasi two-dimensional free-standing film [9], similar to
free-standing smectic A films [10]. SmC∗ is an example
of a complex fluid with additional macroscopic degrees of
freedom, which give rise to new aspects in pattern forma-
tion. Here we describe a new convective instability and
a generalized Frederiks transition, which both are only
possible due to the macroscopic polarization in SmC∗.
The film geometry chosen will allow in future experimen-
tal investigations a detailed observation of the flow field,
which is not always possible for EC in three-dimensional
nematic systems.

Most of the electroconvection experiments in liquid
crystals are performed on thin layers of nematics placed
between two transparent glass plates at a distance of
about 2 ∼ 200µm. The orientational order in nematics,
described by the director [11], can be fixed in those thin
layers along specific directions by preparing the surface

of the glass plates in an appropriate manner. Most often
the director is aligned parallel to the glass plates (planar
geometry). Applying a voltage across the layer the con-
vection sets in above a critical threshold voltage and as
a consequence of the optical anisotropy of nematics the
patterns can be visualized by using polarized light.

Depending on the frequency of the applied voltage
there are two regimes, one at low frequencies (conductive
regime) and one at high frequencies (dielectric regime),
with different thresholds and critical wavelengths for the
cellular convection pattern [8,11,12]. The former is ex-
plained by the Carr-Helfrich mechanism [13]: Starting
from a uniform alignment of the director a small orienta-
tional fluctuation parallel to the glass plates will induce
for applied voltages fluctuations of the charge density,
since the electric conductivity is anisotropic as well. In
the presence of an applied electric field an inhomogeneous
charge distribution leads to mass flow, which is coupled to
director rotations (flow alignment effect) amplifying the
fluctuations under certain conditions for the material pa-
rameters. This induced amplification is hindered by the
fluid viscosity (and the damping of director rotations) as
well as by the orientational elasticity of the director and
its fixed orientation at the glass plates. This leads usu-
ally to a stationary bifurcation to convective rolls with
wavenumber qc at a certain threshold voltage Vc.

At least for some standard substances like MBBA,
which shows a nematic phase at room temperature, all
important material parameters are known and the in-
fluence of external electric and magnetic fields has been
studied extensively in theoretical and experimental work
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showing qualitative agreement in many cases [5–8]. In
contrast to Rayleigh-Bénard convection (driven by a tem-
perature gradient) in isotropic simple or binary fluids,
EC (driven by an electric field) of the type discussed
here needs an anisotropic fluid with a rotational degree of
freedom coupling the preferred direction to the external
field. In addition more control parameters are available,
since not only the amplitude but also the frequency of
the applied voltage can be varied and because material
parameters can easily be tailored within a wide range by
mixing different liquid crystal compounds.

In addition to the standard 3-dimensional setup for
electroconvection in nematics a free standing film is
a promising candidate to gain further insight into the
mechanisms of electroconvection. Since free standing
films of nematics are not stable, smectic liquid crystals
films have to be used. In the C phase the director n is
tilted with respect to the layer normal (k) and its pro-
jection onto to the layer plane is called c-director. It can
be treated as a vector, if all equations are made invariant
under the combined replacements c→ −c and k→ −k.
For the 2-dimensional linearized hydrodynamic equations
given below this implies that the c-director behaves like
the director of two-dimensional nematic liquid crystal. In
the chiral C∗ phase (SmC∗) a spontaneous polarization
exists in each layer (changing its direction helically going
from one layer to the next). Such a system has several
advantages for EC:

i) One can choose the geometry of a free standing film
in a way that allows viewing along the direction, which
cannot be visualized in the standard 3-dimensional ne-
matic setup (i.e. parallel to the glass plates). In freely
suspended films the director alignment and the convec-
tive flow can be monitored directly using a polarizing
microscope. (Section II)

ii) The well defined onset of an instability can serve as
an additional means to measure some elastic and viscous
material parameters in smectic phases [14], which cannot
be obtained directly.

iii) The macroscopic polarization in SmC∗ can be used
to modify the system by adding different amounts of chi-
ralizing agents. It also provides an additional direct cou-
pling to the external field leading to new physical phe-
nomena (Chapters V-VI).

iv) Fluctuations of the tilt angle ψ of the director n
and undulations of the film surface can give rise to new
interesting effects in pattern forming instabilities. In this
communication, however, such effects will not be consid-
ered.

Apart from the Carr-Helfrich mechanism (and its re-
finements) for EC in anisotropic fluids, there is another
mechanism in fluids, based on surface charge layers (“dif-
fusion layers”), that leads to electrohydrodynamic insta-
bilities even in isotropic fluids or isotropic films (i.e. thin
smectic A liquid crystal films [10,15]) and to the “vor-
tex mode” pattern above threshold [10]. The influence
of this mechanism on EC at very low frequencies of the
applied field will be discussed elsewhere. To distinguish

the mode explained by Carr-Helfrich from the “vortex
mode” the former is sometimes called “domain mode”.

Since we are mainly interested in the effects of the
film geometry and of the macroscopic polarization on
EC, we are using here a simplified description assum-
ing fixed smectic layers (i.e. rigid film geometry). As
discussed in Section III the SmC∗ phase, which is biax-
ial for film thicknesses small compared to the pitch, has
a larger number of coefficients contained in the material
tensors such as the tensors for electric conductivity σE

ij ,
for the dielectric tensor εij, for diffusion, for the Soret
effect and for elasticity. However, we neglect this in the
following and describe a freely suspended SmC∗ film as
being isomorphic to a two-dimensional nematic with an
additional spontaneous electric polarization P, which is
coupled rigidly to the in-plane director c. Thus our de-
scription is essentially a 2-dimensional nematic one with
additional terms in the macroscopic equations due to the
polarization. Basic equations are derived in Section III.

In Section IV a linear stability analysis of the
convection-free state is formulated. For applied AC volt-
ages, mainly used in experiments, numerical results are
discussed in Section VI, while for applied DC voltages a
more analytic approach is possible and discussed in Sec-
tion V. The observation of pattern forming instabilities
is restricted in some cases by a homogeneous reorienta-
tion instability known as the Frederiks transition. We
present a generalized “polarization Frederiks effect” in-
cluding torques due to the spontaneous polarization as
well as to the dielectric anisotropy εa. Such a reorien-
tation instability from the planar ground state is now
possible for both signs of εa (and even for εa = 0). A
detailed nonlinear analysis of the generalized Frederiks
transition is given in Ref. [16].

The known results for nematics [11] are qualitatively
unaffected by the presence of the macroscopic polariza-
tion for low and high frequencies of the applied electric
AC field. At intermediate frequencies, however, a new
“subharmonic regime” appears as the first unstable mode
in Sm C∗. Its threshold voltage increases with decreas-
ing polarization. For vanishing polarization this regime
does not exist and is therefore not accessible in other liq-
uid crystal phases such as nematics or smectic C. Under
certain conditions a codimension-3 point is found, where
the three different instabilities (conductive, dielectric and
subharmonic, all with different wavelengths and different
temporal behavior) compete at onset.

II. GEOMETRIES

The geometry of the physical situation of interest here
is sketched in Fig.1. In contrast to the nematic phase the
smectic phases are organized in layers. In the smectic C
phase the director n is tilted by a fixed angle ψ relative to
the layer normal k. So the only hydrodynamic degree of
freedom of the director alignment is a rotation θ around
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k. The projection of n onto the plane of the smectic lay-
ers is the c director, which can be observed by polarized
light normal to the layer. Due to the existence of k and
c this phase is biaxial.

In contrast to the SmC phase the SmC∗ phase shows
an intrinsic twist of the director from layer to layer. This
additional symmetry breaking (C2h ; C2 locally) allows
microscopic electric dipoles to form a spontaneous elec-
tric polarization P, which lies in the planes (perpendicu-
lar to both k and c) and is twisted, too. We will neglect
this twist in the following thus assuming that the thick-
ness of the freely suspended film is small compared to the
pitch of the helielectric C∗ phase [9], which is typically
∼ 1 . . . 10 µm.
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FIG. 1. a) A stack of SmC∗ layers is shown, for which
the orientation of the director n changes from layer to layer
gradually. b) Similarly to experiments with SmA films [17]
we suggest the sketched experimental setup for the study of
electroconvection in SmC∗-films. A rectangular freely sus-
pended SmC∗-film is plotted with the electrodes parallel to
x-direction. The length of the film is assumed to be much
longer (‖x) than wide (‖z).

Thus we consider as the ground state (without applied
voltage) a homogeneous structure, where each, P and c,
have on average one specific preferred direction, perpen-
dicular to each other. Since we assume the layers to be
rigid, we can use a 2-dimensional model to describe the
system. The first and last few layers (at the free surface)
might be deformed and might form higher ordered smec-
tic phases. We neglect those effects here and consider
their influence elsewhere.

III. BASIC EQUATIONS

A systematic approach to electrohydrodynamics in liq-
uid crystals is presented in Ref. [18]. The origin of hydro-
dynamic variables are either conservation laws or spon-
taneously broken symmetries. In the smectic C phase
translational symmetry along the layer normal and rota-
tional symmetry about the layer normal are broken and,
thus, layer displacement (along its normal) and in-plane
rotations of the c vector are the hydrodynamic variables
in addition to those (mass density ρ, momentum den-
sity g and energy density ε) already present in isotropic
liquids. Since the Carr-Helfrich mechanism requires the
presence of free charges, electric charge (ρe) conservation
has to be considered.

Since the film geometry we have in mind is approxi-
mately a 2-dimensional situation, we already reduce the
full three dimensional formulation of the equations to
a two dimensional one. We follow the notation of Refs.
[19–22] to write down the conservation of charge and mo-
mentum as well as the director balance equation (incom-
pressibility assumed). In the following we assume isother-
mal conditions and a single component liquid crystal.

The in-plane spontaneous polarization P

P = p0 (sin θ, 0,− cos θ) (1)

is always perpendicular to the c director

c = (cos θ, 0, sin θ) (2)

where the angle θ describes the orientation within the
film plane. The c director is the projection of the n di-
rector

n = (sinψ cos θ, cosψ, sinψ sin θ) (3)

where the angle ψ describes the tilt of n with respect to
k.

The charge conservation is described by

∂tρe + divj = 0 , (4)

where ∂t is the partial time derivative. The electric cur-
rent density results from the convective charge transport
(due to the velocity field vi), from conduction (due to
the electric field E), and from (dissipative) dynamic flex-
oelectricity (due to the molecular field, cf. Eq.(13) below)

ji = ρevi + σE
ijEj +∇j(ζE

kjihk) . (5)

The electric conductivity is one of the symmetric second
rank material tensors, which in SmC (and SmC∗ locally)
have 4 different components

σE
ij = σ1kikj + σ2(δij − kikj) + σ3 ninj

+
1
2

σ4(nikj + njki) . (6)

In our 2-dimensional description only two coefficients are
relevant and all the second rank material tensors are of
the form

σE
ij = σ⊥δij + σacicj = σ⊥δtr

ij + σ‖cicj , (7)
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where δtr
ij ≡ δij − cicj and σa ≡ σ‖ − σ⊥, with σ⊥ = σ2

and σa = σ3 sin2 ψ. For the structure of the dynamic
flexoelectric tensor ζE

ijk see Ref. [18].
The (Legendre transformed) electric energy density is

given by

fe = −1
2
εijEiEj − PiEi + ẽkjiEi∇kcj , (8)

from which the dielectric displacement is obtained as a
sum of the field contribution Ei, the spontaneous polar-
ization Pi and the static flexoelectric part (the latter will
be neglected below)

Di = − δfe

δEi
= εijEj + Pi − ẽkji∇kcj . (9)

The electric field itself E = E0 − ~∇φ can be decomposed
into the external field E0 (along the z-direction in the
following) due to the applied voltage V

E0(t) =
V (t)

d
with V (t) = V0 a(t) (10)

and the gradient of the induced electric potential φ. This
fulfills the first quasi-static Maxwell equation curlE = 0,
while the second one, divD = ρe can be used to eliminate
ρe from Eq.(5).

The balance equation of the director [19,20,22] is writ-
ten here in the 2-dimensional form

ċi + Yi = 0 . (11)

The quasi-current Yi contains a reactive part due to flow
and a dissipative part due to gradients of c and E and
Eq.(11) reads

∂tci + (v · ∇)ci = ζE
ijk∇jEk + (12)

δtr
ik

(
1
2 (1 + λ)cj∇jvk + 1

2 (λ− 1)cj∇kvj + 1
γ1

hk

)
,

showing a coupling of director rotations to rotational
flow, to elongational flow (via the dimension-less flow
alignment parameter λ) and to the molecular field hi (via
the the rotational viscosity γ1). The dynamic flexoelec-
tric effect (∼ ζE

ijk) will be neglected below. The molecu-
lar field hi is the variational derivative of the free energy
density f ,

hi = − δf

δci
= − ∂f

∂ci
+∇j

∂f

∂∇jci
, (13)

with f = fF + fe the sum of rotational elasticity fF [11]
,

fF =
1
2
K1(div c)2 +

1
2
K2(c · curl c)2 (14)

+
1
2
K3(c×curl c)2 ,

and the electric energy density fe from Eq.(8). The mo-
mentum conservation,

ρm

(
∂t + (v · ~∇)

)
vi = ∇l(σR

il + σD
il ) + (~∇ ·D)Ei , (15)

includes the electric volume force on induced and spon-
taneous polarizations in the media due to the definition
of the dielectric displacement in Eq.(9). The reversible
part of the stress tensor is

σR
ij = −pδij −

1
2

(
[λ + 1]δtr

ikcj + [λ− 1]δtr
jkci

)
hk , (16)

where p is the hydrostatic pressure. The irreversible part
of the stress tensor is [20]

σD
ij = 2ν2Aij + 2(ν1 + ν2 − 2ν3)cicjckclAkl (17)

+ 2(ν3 − ν2) (Aikckcj + Ajkcick)
+ (ν5 − ν4 + ν2)δijckclAkl ,

where 2Aij = ∇ivj +∇jvi has been used and incompress-
ibility,

divv = 0 , (18)

has been assumed. The thermal degree of freedom will
be neglected, since generally it does not play a role in
EC.

IV. LINEAR ANALYSIS

A. Linearized equations

In the following we will investigate the linear stabil-
ity of the homogeneous and convection-free planar ba-
sic state θ = 0, v = 0 and φ = 0 (i.e. c is in x- and
E0 in z-direction), which is stable at voltages V be-
low a certain threshold value. Therefore we linearize
our system of equations around the basic state and con-
sider the dynamics of the small deviations θ, v, and φ.
Due to the 2-dimensional description there are no gradi-
ents in y-direction and all vector fields have vanishing y-
components (i.e. vy = 0). The component vx is expressed
by vz via the incompressibility condition (18). The pres-
sure is obtained by taking the divergence of Eq.(15), but
it will not be needed.

We consider a film that is infinitely extended in x-
direction (or periodic boundary conditions) and we can
therefore treat the x-dependence of the linearized equa-
tions of motion by a Fourier ansatz:

φ(x, z, t) = sin(qx) φ̃(z, t),
vz(x, z, t) = sin(qx) ṽz(z, t), (19)

θ(x, z, t) = cos(qx) θ̃(z, t) .

After some straightforward algebra we obtain three lin-
ear equations of motion for the fields φ̃(z, t), ṽz(z, t) and
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ṽz(z, t). Dropping the “tilde” for simplicity the equation
corresponding to the charge conservation for example is:(

ε‖q
2 − ε⊥∇2

z

)
∂tφ − (εaE0(t)− p0) q ∂tθ + (20)(

σ‖q
2 − σ⊥∇2

z

)
φ − (εa[ ∂tE0(t) ] + σaE0(t)) q θ = 0 .

In order to rewrite the equations in a dimension-less form
we rescale all lengths by the film width d, i.e.

x = x′
d

π
. (21)

While frequently time is scaled by the charge relaxation
time ε⊥/σ⊥, we choose instead the following rescaling for
time, voltage and mass density, respectively,

t = t′ τ0 = t′
γ1d

2

K1π2
, (22)

V = V ′ π

(
K1

ε⊥

) 1
2

, (23)

ρm = ρ′m
γ2
1

K1
. (24)

so, if the film width d is varied, only rescaled conduc-
tivities σ′⊥, σ′‖ and p′0 must be changed (cf. Chap. VI D).
For the variables this implies the dimension-less (primed)
forms

φ′ = φ

(
ε⊥
K1

)1
2

, (25)

v′z = vz
γ1d

K1π
, (26)

θ′ = θ , (27)

while q, ∇z and ∂t scale inversely to Eqs.(21) and (22),
respectively. In order to simplify the resulting equations
we introduce the dimension-less abbreviations:

σ′‖,⊥ = σ‖,⊥
d2

π2

γ1

ε⊥K1
, (28)

p′0 = p0
d

π
(ε⊥K1)

− 1
2 . (29)

Dropping the primes everywhere for notational simplic-
ity, the linearized dimension-less equations then read:

0 =
(

ε‖
ε⊥

q2 −∇2
z

)
∂tφ +

(
− εa

ε⊥
V (t) + p0

)
q ∂tθ (30)

+
(
σ‖q

2 − σ⊥∇2
z

)
φ +

(
− εa

ε⊥
( ∂tV (t) ) − σaV (t)

)
q θ ,

0 = −∂tθ +
(

p0 −
εa

ε⊥
V (t)

)
q φ− 1

q

(
α2q

2 + α3∇2
z

)
vz

+
(

εa

ε⊥
V 2(t)− p0 V (t)− K3

K1
q2 +∇2

z

)
θ , (31)

0 = ρm(q2 −∇2
z) ∂tvz + q

(
α2q

2 + α3∇2
z

)
∂tθ

+
(
∇2

z −
ε‖
ε⊥

q2

)
q2 V (t)φ +

(
εa

ε⊥
V 2(t)− p0V (t)

)
q3 θ

+
(
ηc q4 − 2 η̂ q2∇2

z + ηb∇4
z

)
vz . (32)

In Eq.(32) the molecular field hi has been eliminated
via Eq.(31). The external field E0 has been replaced
by the external applied voltage V , with V = E0 for
dimension-less quantities. In addition we have used the
abbreviations (in order to make contact with the notation
in nematic EC) in the dimension-less rescaling:

2 α2 = −1− λ ,

2 α3 = 1− λ ,

ηb =
ν3

γ1
+

1
4

(1− λ)2 , (33)

ηc =
ν3

γ1
+

1
4

(1 + λ)2 ,

η̂ =
1
γ1

(ν1 + ν2 − ν3) +
1
4
(1− λ2) .

We are left with three homogeneous linear partial dif-
ferential equations for θ, vz and φ. They are similar to
the linear equations for planarly aligned nematic liquid
crystals [12,23], but contain in addition the effects of the
polarization p0. Equations (30-32) can be written in ma-
trix form,

B(t,∇z) · ∂tu(z, t) = L(t,∇z) · u(z, t) , (34)

with the (formal) vector field:

u = (φ, θ, vz). (35)

We always assume DC or periodic AC driving voltages.
For periodic voltages V (t) = V (t + T ), with T = 2π/ω,
the matrices B and L are periodic in time and Eq.(34)
shares some similarities with the well known Matthieu
equations. In the following we assume additionally

V (t + T/2) = −V (t). (36)

B. Boundary conditions

We consider films infinitely extended in x-direction (or
take periodic boundary conditions). In z-direction the
film is confined between electrodes located at z = ±π

2 ,
with the following consequences. The velocity vz perpen-
dicular to the electrodes has to vanish at this surface:

vz(±
π

2
) = 0 . (37)

In addition stress-free boundary conditions,

∂2
zvz(±

π

2
) = 0 , (38)
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or rigid boundary conditions

∂zvz(±
π

2
) = 0 . (39)

are assumed, where the latter case is closer to real exper-
imental conditions.

At the surface we assume the director c to lie, on av-
erage, in one direction (c = (1, 0, 0)) and the induced
potential to be zero:

θ(±π

2
) = 0 , φ(±π

2
) = 0 . (40)

C. Symmetries and Floquet analysis

The solutions of the linearized equations (30-32) can
be classified with respect to their symmetry properties
under spatial reflections and translations in time.

Choosing the line z = 0 to be the middle of the film,
i.e. −π/2 < z < π/2, where π is the rescaled film width in
Fig.1, Eq.(34) is invariant under a reflection with respect
to the z-direction.

z → −z (41)

This symmetry of the equations together with the bound-
ary conditions chosen allows to characterize all solutions
to be either symmetric u(z) = u(−z), or antisymmetric,
u(z) = −u(−z), with respect to z. This would not be
possible, if we had kept the flexoelectric effect related to
ẽijk in Eqs.(8) and (9) [12] and its dynamic analog ∼ ζE

ijk

in Eqs.(5) and (12).
For periodic voltages as given in Eq.(36), the linear

homogeneous Eq.(34) is invariant under the time trans-
lations:

t→ t + nT (n integer, positive) . (42)

According to the spectral method of Floquet [24] this
leads to a general solution of the form

u(z, t) = û(z, t)eσt , (43)

with the Floquet exponent σ and the periodic function
û. Due to the symmetry (42) the solutions û are grouped
according to the integers n into harmonic ones (n = 1),
subharmonic ones (n = 2), etc.. The harmonic ones are
invariant under a single T -translation t → t + T , i.e.
û(t) = û(t + T ), while the subharmonic ones change
sign û(t) = −û(t + T ) under that translation. The full
solutions u(t) do not have these symmetries because of
the Floquet multiplier exp(σt). However the prefactors
produced by a time translation, i.e. exp(σT ) for a T -
translation, are irrelevant, since the amplitudes of the
solutions u(t) are not determined by the linear, homoge-
neous equation (34).

The Floquet exponent σ is a function of the exter-
nal (V0, ω) and internal (material) parameters of the

system and depends on the transverse wavevector q. It
governs the linear stability of the basic, non convective
state against inhomogeneous perturbations u, which is
stable, if Re(σ) < 0, and unstable for positive growth
rates Re(σ) > 0. Thus, from the condition

Re [σ(V0, q, ...)] = 0 (44)

the parameters can be determined which separate the lin-
ear stable regime from the unstable one. Eq.(44) allows
for instance the determination of V0 as a function of q,
the so called neutral curve, V0(q), at which the real part
of the Floquet exponent changes its sign. The absolute
minimum of V0(q), Vc = V0(qc), gives the threshold for
the onset of convection in linearized stability analysis.

For vanishing p0 (SmC phase) as well as for T -periodic
and antisymmetric ac voltages (cf. (36)), e.g. sinusoidal,
square or triangular wave forms, there is an additional
symmetry with respect to time translations, since Eq.(34)
is invariant under the replacement,

t→ t +
T

2
, if

 φ
θ
vz

→ ±γ

 −φ
θ
vz

 (45)

where γ is an irrelevant constant. This symmetry re-
quires the solutions û to be harmonic, since by applying
(45) twice (i.e. after a T -translation) û is mapped to it-
self. Thus, if Eq.(45) is valid, subharmonic solutions are
ruled out. The upper and lower sign in (45) belong to two
different solutions, corresponding to the so-called conduc-
tive and dielectric regime, respectively, known from EC
in nematic liquid crystals [11]. In SmC∗ however, this
symmetry (45) is lifted, since p0 6= 0. In that case sub-
harmonic solutions are possible and the two harmonic
regimes can still be discriminated, but they are no longer
purely “conductive” nor purely “dielectric”.

D. Mode ansatz

For the actual determination of the eigenvalues σ we
transform Eq.(34) into a system of linear algebraic equa-
tions by choosing an appropriate representation of the
periodic part of the solution (43)function, û(z, t). Most
often, û is assumed to have the same period as the driving
voltage. However, bifurcation to nT -periodic solutions
(n integer, > 1) is also possible, where generally only the
subharmonic (period doubled) case n = 2 gives stable
solutions [24]. In this state the basic time translational
symmetry t→ t + T is broken spontaneously. Therefore,
we make the ansatz

û =
N∑

l=−N

ul(z) exp(i l
ω

2
t) . (46)

which contains both, the T-periodic, harmonic (l = ±2)
and the 2T -periodic, subharmonic (l = ±1) solutions as
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well as all their higher harmonics (l = even or odd, re-
spectively) and even time independent ones.

The dependence on z is expressed by a complete set
of orthogonal functions according to the boundary con-
ditions chosen. The z-dependence of φ(z) as well as θ(z)
can be described appropriately by an expansion with re-
spect to trigonometric functions:

fm(z) =
{

cos(mz) : m = 1, 3, 5, ...
sin(mz) : m = 2, 4, 6, ...

}
. (47)

Each of it fulfills the boundary conditions in Eq.(40).
For stress free boundary conditions (38) this expansion is
also appropriate for the velocity field vz(z) and Eq.(34)
is solved by

û =
N∑

l=−N

M∑
m=1

Ulm exp(i l
ω

2
t) fm(z) . (48)

The (vector) coefficient matrix Ulm = (Plm, Tlm, Glm)
consists of three components according to the three com-
ponents of û = (φ, θ, vz).

For rigid boundary conditions the ansatz {fm(z)} for
the velocity field does not satisfy Eq.(39) and has to be re-
placed by symmetric and antisymmetric Chandrasekhar
functions [10,25],

rm(z) =


cosh(λmz/π)
cosh(λm/2) −

cos(λmz/π)
cos(λm/2) : m = 1, 3, ...

sinh(λmz/π)
sinh(λm/2) −

sin(λmz/π)
sin(λm/2) : m = 2, 4, ...


(49)

where in λm the roots of the characteristic equations

tanh(λ/2) + tan(λ/2) = 0 ; λ1, λ3, ... (50)
coth(λ/2)− cot(λ/2) = 0 ; λ2, λ4, ... (51)

are collected in an alternating manner. This leads for
rigid boundary conditions instead of (48) to the ansatz
for vz :

vz(x, z, t) = eσt
N∑

l=−N

M∑
m=1

Glm exp(i l
ω

2
t) rm(z) . (52)

Inserting the mode expansions (46) and/or (52)
into the linearized equation (34) and projecting on-
to the respective eigenmodes exp(i l ω

2 t) rm(z) and
exp(i l ω

2 t) fm(z), we obtain algebraic equations linear in
the coefficients Plm, Tlm, Glm.

Defining a 3M(2N +1)-dimensional vector X contain-
ing all components of Ulm in an arbitrary sequential or-
der, e.g.

X = (P−N,1, P−N+1,1, . . . , PN,1, P−N,2, P−N+1,2, . . . ,

PN,2, . . . , . . . , PN,M , T−N,1, . . . , . . . ,

TN,M , G−N,1, . . . , . . . , GN,M ) , (53)

the set of linear algebraic equations is of the following
symbolic form:

σ B1 ·X + i ω B2 ·X = L1 ·X . (54)

Here the matrices B1, B2 and L1 are 3 × 3 block matri-
ces, where each block itself is a M(2N + 1)×M(2N + 1)
matrix. The matrices B1 and L1 result from B and L
from Eq.(34), respectively, while B2 contains elements of
both, B and L, because of the explicit time derivative of
the external voltage contained in Eq.(30).

Since mixed projection integrals of even and odd func-
tions in space or in time, respectively, vanish identically,
the system (54) will only contain equations coupling even
components to each other and odd components to each
other. In the time expansion even and odd corresponds to
harmonic and subharmonic modes while in the expansion
in z-direction even components are linked to antisymmet-
ric functions and odd ones to symmetric functions (cf.
Eq.(47,49)). Thus the eigenvector of a marginally stable
mode contains components out of one of the following
modes only:

X = { (Uharm,anti), (Uharm,sym), (55)
(Usubh,anti), (Usubh,sym) }.

In Eqs.(46,48,52) we have already truncated the infinite
sums to finite ones taking into account only 2N + 1 tem-
poral and M spatial modes. This approximation is jus-
tified as the amplitude of the corresponding components
decreases extremely fast for N > 8 and M > 6 (Galerkin
approximation). All matrices depend on the yet unde-
termined transverse wavevector q and on the amplitude
V0 of the applied voltage, which we will take as sinu-
soidal, V (t) = V0 cos(ωt) or constant, V (t) = V0, in the
following.

V. DC INSTABILITIES

Before presenting the results for applied AC voltages
in Chap. VI, we will discuss the special case of a time-
independent applied voltage V (t) = V0. Although ex-
perimentally less important than the AC case, because
of charge injection problems, it nevertheless is simple
enough to discuss the influence of p0 on the nature of
the instabilities.

A. DC Polarization Frederiks Effect

In addition to EC instabilities (qc 6= 0), nematic liquid
crystals can also become unstable against a purely ori-
entational instability, if subject to external electric (or
magnetic) fields. This well-known Frederiks transition
[11,26] has the minimum of the neutral curve at qc = 0,
describing a static reorientation of the director (which
is homogeneous in x-direction) without any flow. The
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mechanism is based on the dielectric (or magnetic) sus-
ceptibility anisotropy, which favors an alignment of the
director field parallel or perpendicular to the applied field
depending on the sign of the susceptibility anisotropy
(εa > 0 or εa < 0), while orientational elasticity works to
preserve the original orientation of the director field.

This type of instability is also present in smectic C
films (p0 = 0) and the critical voltage for an electrically
driven splay Frederiks transition can be obtained from
Eq.(31) with q = vz = φ = 0 and θ = θ cos(z) reading
(in our dimension-less units)

V 2
c = ε⊥/εa. (56)

A threshold value and therefore an electrically driven
splay Frederiks transition exist only for finite positive
values of εa, since in our basic state c ⊥ E.
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p  = 0.2
0

Vc

p
0

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a)

b)

-6

-4

-2

0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8p
r

FIG. 2. a) The neutral curve for εa = +0.6ε0 without po-
larization (p0 = 0) and with a polarization p0 = 0.2 and
p0 = 0.5 parallel to the applied field (V0 > 0). In b) the
threshold of electroconvection (solid lines) is compared with
the that of the Frederiks transition (dotted lines) as a function
of the polarization (for the positive value of εa = 0.6ε0).

In this case (p0 = 0) the sign of the DC voltage is
arbitrary, since an applied electric field E is completely

equivalent to −E. Thus, the threshold for the splay Fred-
eriks instability depends on V 2

0 only. This behavior is
changed qualitatively in smectic C∗ due to the presence
of the polarization P. There is an orientational effect of
the field on the polarization and E parallel to P (V0 > 0)
is energetically preferred to the case E anti parallel to P
(V0 < 0) (cf. Fig.1). Thus, even for vanishing dielectric
anisotropy, εa = 0, one finds an orientational transition
of the Frederiks type (“polarization Frederiks effect”) at
the threshold Vc = −1/p0. This instability only occurs,
if the spontaneous polarization and the applied electrical
field are anti parallel to each other (V0 < 0).

In the general case, i.e. for finite values of p0 and εa,
both orientational torques are present and the threshold
formula of the general Frederiks instability (φ = vz =
q = 0) due to an applied DC voltage is

V =
ε⊥p0

2εa

[
1±

(
1 + 4

εa

p2
0ε⊥

)1/2]
. (57)

This formula contains both, the traditional splay Fred-
eriks effect (due to dielectric torques) and the new “po-
larization Frederiks effect” (due to ferroelectric torques).
Since polarization and director are rigidly coupled, both
effects can either enhance each other (for V0 < 0 and
εa > 0) and therefore reduce the threshold voltage (cf.
the lower dotted line in Fig.2b), or counteract each other
(for V0 > 0 and εa > 0) increasing the threshold voltage
(cf. the upper dotted line in Fig.2b).

In contrast to the traditional splay Frederiks transi-
tion that does not exist for εa < 0, the general Frederiks
transition can exist even for εa < 0, if V0 < 0 (external
field anti parallel to the polarization) and if p0 exceeds a
critical value p0 > pc, where

pc = (−4εa/ε⊥)1/2. (58)

In that case the destabilizing effect due to the polariza-
tion overcomes the stabilizing effects due to the dielectric
anisotropy. This range is shown in Fig.3b, where below
the dotted curve the planar initial configuration is un-
stable against homogeneous reorientation of the director
field.

B. DC Electroconvection

The existence of a finite polarization has also a pro-
found influence on the DC electroconvective instability.
Without a polarization p0 (smectic C phase) the sign of
the DC voltage is arbitrary and the threshold for the DC
EC depends on V 2

0 only. This behavior is changed by
the presence of the polarization P in smectic C∗. Now
E parallel to P (V0 > 0) is energetically preferred to the
case E antiparallel to P (V0 < 0) (cf. Fig.1) indicating
that the basic state is more stable in the former situation
than in the latter one. Thus, one can expect the DC EC
threshold to increase (decrease) with p0 for V0 > 0 (< 0),
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which indeed has also been found numerically for rigid
boundaries (cf. the solid curves in Figs.2b and 3b).

This can also be understood analytically. Assuming
stationary instabilities (a Hopf bifurcation has not been
found in our numerical studies), we get a quadratic equa-
tion for V0(q), i.e. b1V

2
0 +b2p0V0+b3 = 0, which is written

down explicitly in App. B for the special case εa = 0 and
stress-free boundary conditions. The interesting point is
that it contains a linear term proportional to p0. Thus,
in contrast to the smectic C case, in the smectic C∗ phase
the neutral curve for DC EC is no longer symmetric w.r.t.
V0 → −V0.

This simple threshold condition also explains, why for
finite p0 values the range of existence of the DC EC is
larger than for zero p0. Real values for Vc are only possi-
ble, if p2

0b
2
2 > −4b1b3. Thus, for zero p0 the product b1b3

must be negative, while for large enough p0 also posi-
tive values of b1b3 lead to an instability threshold. In
particular, for a large enough and destabilizing polariza-
tion (E antiparallel to P, V0 < 0), an electroconvective
instability is possible, even if εa ≤ 0 and σa < 0. In
this situation the planar basic state is stable within the
simple Carr-Helfrich mechanism (p0 = 0), but the desta-
bilization due to p0 overcomes the stabilization due to
negative dielectric and conductive anisotropies.

C. DC Electroconvection vs. Frederiks Transition

To predict the behavior of a smectic film under exter-
nal electric fields, one has to take into account both, a
Frederiks type (qc = 0) and an EC instability (qc > 0).

For p0 = 0 and large positive values of εa the splay
Frederiks transition has always a lower threshold than
electroconvection (see e.g. Ref. [23]). However, the
threshold for the splay Frederiks transition diverges in
the limit εa → 0, but below an intermediate (i.e.
crossover) value of εa EC has a lower threshold than the
Frederiks transition.

For finite p0 the competition between both instabil-
ities is shown in Figs.2 and 3 for positive and negative
εa, respectively. In these and the following figures the EC
curves have been calculated using realistic (rigid) bound-
ary conditions, but there are no qualitative differences to
the case of free boundary conditions.

For a positive εa and for V0 > 0 there are two minima
in the neutral curve (Fig.2a), where the EC threshold
(at finite qc) is lower for large values of p0. In the case of
V0 < 0 and large p0 the minimum of the neutral curve at
finite qc ceases to exist and the (general) Frederiks tran-
sition is the only possible instability. At small values of
p0 there is a crossover between the Frederiks instability
and EC, where the two minima in the neutral curve cor-
respond to the same value of V0. At this codimension-2
point the two instabilities with qc = 0 and qc > 0 coex-
ist and nonlinearities, neglected in the calculation of the
threshold, will decide, which structure actually survives.

This is found numerically to take place at pr = 0.25 and
Vc > 0 for εa = 0.6ε0, while for a smaller (but still pos-
itive) dielectric anisotropy this point is shifted into the
domain with Vc < 0.
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FIG. 3. The neutral curve (a) and the comparison of con-
vective and Frederiks instabilities (b) just like in Fig.2 but for
negative dielectric anisotropy εa = −0.38ε0, where pc = 0.54.

A slightly different scenario is found in the range
εa < 0. If V0 > 0 or if V0 < 0 and p0 < pc (defined
in Eq.(58)), there is only EC and no Frederiks transi-
tion possible (cf. the curves p0 = 0 and p0 = pc − 0.04
in Fig.3a). For p > pc (and V0 < 0) a Frederiks tran-
sition (minimum at q = 0) is possible, while EC (mini-
mum at finite q) seizes to exist for p0 slightly above pc

(p0 = pc + 0.07 in Fig.3). However, immediately at the
point, where the Frederiks transitions starts to exist, it
has a lower threshold than EC (cf. in Fig.3a the dashed,
disconnected curve with two different minima). Thus
the two threshold curves do not cross (no codimension-
2 point) and at pc the (absolute value of the) threshold
voltage jumps down from the EC value to the Frederiks
value. Of course, for a different choice of material pa-
rameters (e.g. σa or εa) the Frederiks threshold could
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be higher than the EC threshold at pc leading at some
pr > pc to a crossover (codimension-2 point) between
EC and Frederiks transition quite similar to the case of
positive εa.

VI. AC INSTABILITIES

A. Harmonic Regimes

For p0 = 0 (smectic C phase) the harmonic solutions of
Eq.(55), l = even, (Uharm,anti , Uharm,sym) are each de-
composed into two independent classes (called A and B in
[12]) representing the conductive and dielectric regimes,
respectively. This is due to the additional symmetry de-
scribed by Eq.(45), which implies that on one branch
(A) the excited modes are only the odd harmonic ones
l = 2, 6, 10, ... of the electric variable φ and the even har-
monic ones l = 0, 4, 8, ... of the hydrodynamic variables
θ and vz, and vice versa for branch B. In the first case,
the lowest mode at the onset of instability consists of a
harmonically oscillating electric charge density while the
hydrodynamic variables are effectively constant. There-
fore the regime is called conductive in agreement with
the Carr-Helfrich explanation for the nematic case. In
the second, dielectric case, the excitation is just the op-
posite with harmonically oscillating lowest modes for the
hydrodynamic variables θ and vz and a constant electric
variable φ (in the lowest mode).

φ

θ

vz

ω = 280 ω = 320

(t)

(t)

(t)

conductive dielectric

V(t)

FIG. 4. The time dependence of the field variables is shown
at the onset of electroconvection in the SmC phase (without
macroscopic polarization). The temporal variations of the
fields at the cell center (z = 0) are plotted in arbitrary units
for the conductive (ω = 280) and dielectric regime (ω = 320).

For small values of the parameter σ⊥d2 the higher or-
der (temporal) modes are considerably excited at the on-
set of instability, as can be seen from Fig.4. Increasing
σ⊥d2 there remain large contributions from these higher
harmonics only near the transition from the conductive
to the dielectric regime [5,27].

In Fig.5 the neutral curves for the class (Uharm,sym),
are plotted for two different values of the polarization,
p0 = 0 and 5 at the frequency ω = 180 of the applied
voltage. For vanishing polarization the neutral curve has
two branches with one minimum each, where the dashed
curve belongs to the conductive regime and the dotted
curve to the dielectric regime.
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p  = 0
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FIG. 5. Neutral curves V0(q) are given for two different
values of the polarization (p0 = 0 and 5) at the frequency
ω = 180 of the applied voltage. The upper (lower) curve in
the conduction regime (dashed lines) and the lower (higher)
one in the dielectric regime (dotted lines) are calculated for
p0 = 0 (p0 = 5). For finite polarizations the additional sub-
harmonic regime occurs at intermediate q values (solid line).

For finite values of the spontaneous polarization, p0,
the symmetry of Eq.(45) no longer exists and all har-
monic modes are coupled. This means, for instance, that
the even harmonic modes (l = 2, 6, 10, ...) of the induced
potential φ are also exited in the conduction regime. The
amplitudes of those additionally excited modes increase
with increasing values of p0. The same holds for the odd
harmonic modes in the dielectric regime. Similar changes
occur for the two other hydrodynamic variables θ and vz.

Despite the polarization induced excitations of even
and odd modes we still call the two regimes conductive
and dielectric, respectively, due to their origin. With in-
creasing values of p0 the minimum of the neutral curve in
the conduction regime (dashed) is shifted to lower, and
the dielectric one (dotted) to higher, critical voltages and
critical wavenumbers qc. For higher values of p0 a new
minimum of the class (Usubh,sym) occurs (Fig.5), which
will be discussed in Sec. VI B.

For nematic liquid crystals it has been shown that
the branches belonging to (Uharm,anti) have always a

10



higher threshold than those for (Uharm,sym) (see Refs.
[8,12,27] and references therein). This is still true for fi-
nite polarizations in the C∗ phase (Fig.6). In addition
also the antisymmetric subharmonic branch (Usubh,anti)
shows a higher threshold voltage than the symmetric sub-
harmonic one (Usubh,sym). Thus, all the antisymmetric
(dash-dotted) solutions are not involved in the onset of
convection and will not be considered any further.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

V0

q

conductive

subharmonic

dielectric

antisymmetric
symmetric

FIG. 6. Three different instability regimes: (a) The con-
ductive, (b) the subharmonic and (c) the dielectric regime.
The solid lines show the neutral curves V0(q) for branches
symmetric under z-reflection, Eq.(41), while the dash-dotted
lines belong to antisymmetric solutions. Here the parameters
(applied AC frequency ω = 180 and spontaneous polariza-
tion p0 = 5) are chosen such that the lowest minimum of the
neutral curves belongs to the conductive regime.

B. Subharmonic AC Regime

The subharmonic regime corresponds to the class
(Usubh,sym) of solutions, where at the onset of convec-
tion all variables φ, θ, and vz are oscillating with half
the frequency (l = 1) and appropriate higher harmon-
ics (l = 3, 5, 7, ...) of the applied voltage. In this regime
the temporal behavior of the fields φ, θ, vz is shown in
Fig.7 at threshold and at the cell center (z = 0). For the
chosen parameter set higher harmonics are considerably
excited.

For p0 = 0 the subharmonic regime is strictly prohib-
ited by the symmetry (45). The absence of this symme-
try for finite polarizations in turn allows for subharmonic
solutions (Figs.5,6), which break spontaneously the dis-
crete time translational symmetry of the driving voltage
(T -periodicity), since they are only 2T -periodic (subhar-
monic).

Changing the frequency ω the three minima of the neu-
tral curve (Fig.5) are shifted relative to each other, such
that any of them can be the absolute minimum, i.e. the
threshold Vc for a certain frequency range. The criti-
cal threshold voltages, Vc(ω) and the associated critical

wavevectors qc(ω) are plotted for each regime as a func-
tion of frequency ω in Fig.8 for two different values of the
polarization p0.

For sufficiently high values of p0 the neutral curve be-
longing to the subharmonic regime (Usubh,sym) has the
lowest minimum for a certain frequency range (solid line
in Fig.8). It always appears at intermediate frequencies,
between the conductive and dielectric regime. Fig.8b
shows the critical wavenumber qc as a smooth function
of the external frequency within a given regime, but with
discontinuous jumps when the marginal stability switches
from one regime to another. Again only two regimes are
present for p0 = 0, but three for large enough p0.

φ

θ

vz

V(t)

FIG. 7. The time dependence of the field variables is shown
at the onset of EC in the SmC∗ phase (with macroscopic po-
larization). The fields at the cell center (z = 0) are plotted
in arbitrary units for the frequency ω = 390 of the applied
voltage. The dynamics of the system is 2T -periodic only, al-
though the driving force V (t) is T -periodic.

Although there is no simple mechanism that could ex-
plain, why a subharmonic regime exists as the marginally
stable solution, the following remarks may help the in-
tuition. With p0 = 0 the sign of V0 is undefined and it
is rather V 2

0 that governs the instability thresholds. A
finite p0, however, introduces contributions linear in V0

as has been shown explicitly in the DC case (Chap.V).
Thus for sinusoidal voltages V (t) the fields may oscillate
either with half the frequency of V (t)2 or V (t), depend-
ing on the influence of the different destabilizing forces.
For very large threshold voltages, such as in the dielec-
tric regime, contributions in the director relaxation time
being quadratic in the voltage, V 2, win over those ef-
fects linear in V . At small frequencies in the conduction
regime the threshold is relatively small and the impurity
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charges can follow the action of the external field im-
mediately while leaving the director orientations roughly
unchanged. In both cases the fields oscillate in a subhar-
monic fashion with respect to V 2.

The frequency range of the conduction regime is al-
ways bounded from above by the inverse charge relax-
ation time. Beyond that frequency the charges get out of
phase and if immediately beyond that frequency the con-
tributions p0V to the director relaxation time are more
important than those proportional to V 2 then the sub-
harmonic regime may have a lower threshold than the
dielectric one. With further increasing frequency also
the threshold increases and therefore at large frequen-
cies V 2 dominates the V effects and the dielectric regime
is favored. Using these qualitative arguments the sub-
harmonic regime can only occur as an additional regime
between the conduction and the dielectric regime.
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FIG. 8. Onset of instability: a) The critical voltages

Vc = V (qc), b) the critical wavelengths qc, of the three regimes
as a function of the applied AC frequency. For low or van-
ishing polarization p0 there are only two regimes, while for
p0 > 4.5 (for the parameters chosen) there is in addition the
subharmonic regime at intermediate frequencies. At those
frequencies, where the instability switches from one regime to
the other, the critical wavevector shows a jump.

C. Codimension-3 bifurcation

The value of p0 can be seen as a third control parameter
of the system in addition to the amplitude, V0, and fre-
quency, ω, of the applied voltage. For large polarizations
the subharmonic threshold curve Vc(ω) intersects both,
the conductive and the dielectric threshold curves, at two
codimension-2 points (indicated in Fig.8). If p0 is low-
ered, these two codimension-2 points approach each other
and finally merge (cf. Fig.9). We have found numerically
that this coalescence happens just at the point, where
also the conductive and dielectric thresholds intersect.
This codimension-3 point is shown in Fig.9 with the pa-
rameter values p3 = 4.5, ω3 = 361, V3 = 41.5 and for the
material parameters given in Appendix A. Here all three
regimes coexist and a competition of three solutions hav-
ing different wavelengths should be seen in experiments.
For p0 < p3 the subharmonic regime disappears. (The
actual value of p3 depends obviously on the material pa-
rameters.) This scenario seems to be generic, since near
this codimension-3 point the threshold curves Vc(ω) are
nearly straight lines, where the conductive and dielectric
curve have the largest and smallest slope, respectively.
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FIG. 9. Codimension-3 point: At the minimal value of the
polarization (p0 = 4.5 for the parameters chosen), for which
the subharmonic regime exists, the three different regimes
have equal critical voltages at a certain external AC frequency
ω3 ≈ 361. This is a codimension-3 point.

Increasing however the polarization p0 well beyond p3

the cutoff frequency of the conductive regime is shifted to
higher values and the threshold and critical wavelength
at a fixed frequency is lowered further. The subharmonic
regime appears always after the cutoff of the conductive
regime for high values of p0 and is extended to much
higher frequencies at the cost of the dielectric regime.
E.g. for p0 = 50 the cutoff frequency is at ω ≈ 13000
while for the conductive regime we find typically rather
small threshold values qc ≈ 0.15 and Vc ≈ 0.5 at ω = 200.
The observation of such very small wavenumbers should
not be confused with the Frederiks transition (q ≡ 0,

12



which does not occur for εa < 0).

D. Parameter Dependencies

The frequency range, where the subharmonic regime
has the lowest threshold, depends not only on the po-
larization but also on the values of the other material
parameters and on the film width. To design an experi-
ment for investigating the subharmonic regime it is help-
ful to know, for which geometric and material parameters
the subharmonic regime can be observed most likely. All
results described in the previous sections of this work
have been calculated for the values given in Appendix
A. The electroconvective instability is especially sensi-
tive to changes in the electrical anisotropies εa and σa

[12,23,27,28]. Therefore we consider the influence of vari-
ations of these quantities on the existence range of the
subharmonic regime.

i) A scaling of the two dielectric constants ε⊥,‖ by the
same factor will only shift the threshold voltage due to
Eq.(23). Large positive values of εa will not lead to EC
(qc 6= 0), since the threshold for the Frederiks transition
becomes the lower one. For εa < 0 changes of ε‖/ε⊥
(or εa/ε⊥) have rather subtle implications, which can-
not be understood from the scaling of the equations (30-
32) alone, but numerical calculations have to be used.
Thus we have computed thresholds curves Vc(ω) with
p0 = 5 for different values of εa (cf. Fig.10). The differ-
ent regimes are separated by codimension-2 lines, which
intersect at the codimension-3 point. The range of the
subharmonic regime widens with εa becoming more neg-
ative, while above εa = −0.3 (for the parameters used)
the subharmonic regime ceases to exist.
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FIG. 10. The existence range of the subharmonic regime
at various ac frequencies ω as a function of the dielectric
anisotropy for p0 = 5 and σ⊥ = 133 fixed (both in dimen-
sionless units cf. Eq.(28,29)) and ε⊥ = 5.25. The dashed line
describes the codimension-2 line between the conductive and
the dielectric regimes for p0 = 0.

ii) We investigated the dependence on σa by keeping
σ⊥ constant and changing the value of σ‖. Increasing
values of σa enforce the ability of space charges to fol-
low the applied alternating field up to higher frequen-
cies according to the Carr-Helfrich mechanism [11,13].
Thus the cut-off frequency of the conductive regime in-
creases approximately proportional to σa while the di-
electric regime is only slightly affected. This is shown
for p0 = 0 by the dashed line in Fig. 11. Similar be-
havior is found for a finite polarization (solid lines) al-
though for σa/σ⊥ < 0.55 (for the parameters chosen)
the subharmonic regime squeezes in between the two
other regimes. The threshold voltages of the conduc-
tive and the dielectric regimes diverge by approaching
σa → 0 according to the Carr-Helfrich mechanism caus-
ing smaller values of the anisotropy σa to favor the sub-
harmonic regime. Furthermore the subharmonic regime
exists even for (slightly) negative values of the anisotropy
σa. The same has been found for an applied DC-voltage
(cf. Sec. V C). Increasing p0 will again lead to a larger
frequency range of the subharmonic instability and the
subharmonic regime will exist to even larger values of σa

than indicated in Fig. 11.
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FIG. 11. The solid lines indicate the existence ranges of
the different instability regimes at various ac frequencies as
a function of the conduction anisotropy σa for p0 = 5 and
σ⊥ = 133 and ε⊥ = 5.25; εa = −0.38. The dashed line de-
scribes the codimension-2 line between the conductive and the
dielectric regimes for p0 = 0.

iii) In Chapt. IVA the scaling was chosen such that
variations of the film width d do not change the (di-
mensionless) viscosities and elastic constants, which are
rather difficult to vary experimentally. This means that
mainly the same compounds can be used for different film
widths d. On the other hand the frequency of the applied
AC voltage as well as the spontaneous polarization p0

(by adding chiral molecules) or the electric conductivity
σ (by adding dopants) can easily be adjusted in an ex-
periment. I.e. the influence of the film width d, showing
up in the (dimensionless) quantities σ ∼ d2, p0 ∼ d, and
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ω ∼ d2 (cf. Eqs.(22, 28, 29)) can be balanced by appro-
priate changes of the physical quantities. Varying both,
the film width and the material parameters, the thresh-
old voltage, the critical wavelength and the frequency can
be brought into a range accessible to experiments.

VII. CONCLUSION

In this paper we have analyzed the linearized electro-
hydrodynamics of a freely suspended smectic C∗ liquid
crystal film. We have neglected the biaxiality of this
phase and have described it as being isomorphic to a
two-dimensional nematic with an additional spontaneous
polarization. The qualitatively new effects due to the
spontaneous electric polarization are the main topic of
this work. We predict electroconvection for thin smec-
tic films as already known from bulk nematics, but with
some completely new and experimentally accessible fea-
tures. For applied DC voltages a spontaneous polariza-
tion leads to a stabilization or a destabilization of the
planar ground state (i.e. to an increase or decrease of
the threshold for electroconvective instabilities) depend-
ing on whether the polarization is parallel or anti parallel
to the driving field. A generalized Frederiks transition in-
cluding torques due to the polarization is possible even
for negative or vanishing dielectric anisotropy and its in-
fluence on the observation of pattern forming instabilities
has been discussed.

For applied AC voltages the well known conductive
and dielectric regimes, which are governed by a harmonic
movement of all variables at the onset of convection, are
mainly shifted to lower and higher thresholds, respec-
tively, due to the finite polarization. A new class of so-
lutions, however, moving subharmonically at the onset,
becomes possible due to the polarization. Detailed in-
vestigations of the dependence on the parameters of this
new regime give the trends for which materials the sub-
harmonic regime will occur most likely. The frequency
range of the subharmonic regime depends mainly on the
polarization, dielectric and the conduction anisotropy as
well as the width d of the film. The major trends are:
Moderate values of the polarization, small width d, small
anisotropies of the conductivity, negative values of the
dielectric anisotropy and small values of σd2 are favor-
able for the subharmonic regime. It is predicted that
electroconvection can also occur for negative anisotropy
of the conductivity due to the polarization. The possi-
bility of an oscillatory Hopf bifurcation was considered
in all numerical calculations but was never found for any
parameter regime as discussed in Sec.VID.

The nonlinear treatment of the various stationary bi-
furcations (especially near the codimension-3 point) will
be the subject of future work, which will also include
a fully three-dimensional calculation taking into account
film undulations and the helical structure of the polar-
ization.

Finally we have made explicit suggestions for experi-
ments to find the novel subharmonic regime.
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APPENDIX A
MATERIAL PARAMETERS

All numerical calculations were done with material pa-
rameters listed in the table below, if not mentioned oth-
erwise in the text. See Chaps. VIC and VID for fur-
ther details. Note that in this Appendix all quantities
are given in real units and correspond to the unprimed
quantities e.g. σ and p0.

Parameter Symbol Value Unit
elastic constants K1 6.66 10−12N

K2 4.2
K3 8.61

viscosities α1 -18.1 10−3 kg
ms

α2 -110.4
α3 -1.1
α4 82.6
α5 77.9

dielectric constants ε0 8.85 10−12 As
V m

εa/ε0 -0.38
ε‖/ε0 4.87
ε⊥/ε0 5.25

conductivities σ‖ 5.6 10−8 1
Ωm

σ⊥ 3.7
σa 1.9

polarization p0 0 . . . 1 10−9 C
m2

APPENDIX B
DC ELECTROCONVECTION FOR ∈a = 0

To analyze analytically the influence of p0 on EC,
we present here the neutral curve V0(q) for DC EC for
free boundaries and εa = 0. The ansatz (46) for û of
the general solution Eq.(43) is reduced to three time-
independent functions u0 = (φ0, θ0, vz0), i.e. l = 0 in
(46). For free boundaries it is sufficient to take along
only the lowest order (m = 1) in the space expansion
(47)-(49). The generalized eigenvalue problem (54) for
Re(σ) = 0 is then reduced to 0 = L1 · X, where L1 is
a 3 × 3 matrix. Non-trivial solutions are obtained for
det L1 = 0. From Eqs.(30-32) we obtain
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V =
p0b2

2b1

[
− 1±

(
1 +

4b1b3

p2
0b

2
2

)1/2]
(59)

with

b1 =
σa

σ⊥
q2 (α3 − α2q

2) (1 + q2)
(ηcq4 + 2η̂q2 + ηb) (q2σ‖/σ⊥ + 1)

(60)

b2 =
σaq2

σ‖q2 + σ⊥
− 1− α2q

2 − α3

ηcq4 + 2η̂q2 + ηb
q2 (61)

b3 = 1 + q2K3/K1 (62)

One can easily see that the threshold exists as long as
the expression under the square root stays positive, which
is the case for p2

0b
2
2 > −4b1(1 + q2K3/K1). For p0 = 0,

b1 has to be negative, which implies σa to be positive. If
p0 > 0, even negative values of σa are possible, where the
critical value for the conductivity anisotropy up to which
DC EC exists, scales like σa ∝ −p2

0. In the general case
of finite εa the formulas become more involved, but there
is still a condition on the material parameters (mainly on
p0, σa and εa) for the existence of DC EC. This means,
on the other hand, that there are parameter ranges (pos-
itive and/or negative σa and/or εa), where EC exists for
large enough p0, but not for p0 = 0.

[1] Propagation in Systems far from Equilibrium, edited by
J. E. Wesfreid et al. (Springer, New York, 1988).

[2] Spatio-Temporal Patterns in Nonequilibrium Complex
Systems, Vol. XXI of Santa Fe Institute Studies in the
Sciences of Complexity, edited by P. Cladis and P. Palffy-
Muhoray (Addison-Wesley, New York, 1995).

[3] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65,
851 (1993).

[4] P. Oswald, J. Bechhoefer, and F. Melo, Mat. Res. Bul-
letin 16, 38 (1991).

[5] W. Zimmermann, Mat. Res. Bulletin 16, 46 (1991).
[6] L. Kramer and W. Pesch, Annual Rev. Fluid Mech. 27,

515 (1995).

[7] I. Rehberg et al., in Festkörperprobleme 29, (1989), p. 35.
edited by Fritz Sauter, Vieweg Branschweig

[8] S. Kai and W. Zimmermann, Prog. Theor. Phys. Suppl.
99, 458 (1989).

[9] H. R. Brand, P. E. Cladis, and P. L. Finn, Phys. Rev. A
31, 361 (1985).

[10] S. W. Morris, J. R. de Bruyn, and A. May, Phys. Rev. A
44, 8146 (1991).

[11] P. G. de Gennes and J. Prost, The Physics of Liquid
Crystals (Clarendon, Oxford, 1993).

[12] W. Zimmermann, in Defects, Singularities and Patterns
in Nematic Liquid Crystals, NATO Advanced Study In-
stitute Series, edited by J. M. Coron, F. Helen and J.
Ghidaglia (Kluwer, Dordrecht, NL, 1991).

[13] W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
[14] C. Rosenblatt, R. Pindak, N. Clark, and R. B. Meyer,

Phys. Rev. Lett. 42, 1220 (1879).
[15] S. Faetti, L. Fronzoni, and P. Rolla, J. Chem. Phys. 79,

1427 (1983).
[16] W. Zimmermann, S. Ried, H. Pleiner, and H. R. Brand,

Polarization Frederiks-Transition in SmC∗ Liquid Crys-
tal Films, submitted for publication.

[17] S. W. Morris, J. R. de Bruyn, and A. May, J. Stat. Phys.
64, 1025 (1991).

[18] H. Pleiner and H. R. Brand, in Pattern Formation in Liq-
uid Crystals, edited by A. Buka and L. Kramer (Springer,
Berlin, 1995).

[19] W. Zimmermann, H. Pleiner, and H. Brand, unpub-
lished, 1995.

[20] D. Forster et al., Phys. Rev. Lett. 26, 1016 (1971).
[21] P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev.

A 6, 36 (1972).
[22] H. R. Brand and H. Pleiner, Phys. Rev. A 35, 3122

(1987).
[23] E. Bodenschatz, W. Zimmermann, and L. Kramer, J.

Phys. (Paris) 49, 1875 (1988).
[24] G. Iooss and D. D. Joseph, Elementary Stability and Bi-

furcation Theory (Springer, Berlin, 1980).
[25] S. Chandrasekhar, Hydrodynamic and Hydromagnetic

Stability (Oxford University Press, London, 1961).
[26] V. Frederiks and V. Zvetkoff, Sov. Phys. 6, 490 (1934).
[27] L. Kramer et al., Liquid Crystals 5, 699 (1989).
[28] W. Zimmermann and L. Kramer, Phys. Rev. Lett. 55,

402 (1985).

15


