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Abstract

Liquid crystal phases (LCs) formed by achiral bent-core molecules (banana LCs)
are distinguishable from those of their classical (i.e. rod/disc-shaped) counterparts
with only quadrupolar order. We argue that the interplay between tetrahedratic
(octupolar) and quadrupolar order clarifies the physics of banana LCs sufficiently
to account for two effects only observed in achiral banana LCs: a hundred times
larger field induced anisotropy than observed in classical LCs and ambidextrous
chirality where left and right-handed chiral domains co-exist.
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1 Introduction

Symmetry allowed cross-coupling terms in a free energy are often the driv-
ing force behind new physical phenomena studied in complex systems such as
liquid crystals, polymers and elastomers, colloidal suspensions and biologi-
cally relevant fluids. Here, we analyse the consequences of symmetry allowed
cross-couplings with [1,2] and without electric fields, between the octupolar
tetrahedratic order parameter, Tijk [3], and the familiar quadrupolar orienta-
tional order parameter, Qij, of rod and/or disc-shaped liquid crystals [4]. With
this analysis, we account for two observations that have only been observed
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in liquid crystal phases exhibited by achiral bent-core molecules (banana liq-
uid crystals) [5–8] and which cannot be understood using only the physics
developed for rod/disc liquid crystals, i.e. Qij.

The first observation is that an external electric field (E) can induce in an
‘isotropic’ liquid an anisotropic liquid (i.e. Qij 6= 0) [5]. The remarkable aspects
of this observation are the size of the effect (nearly two orders of magnitude
larger than observed in field induced enhancements of rod/disc-shaped liquid
crystals) and that the increase in transition temperature to the isotropic liquid
state, ∆Tc, scaled with E. When the field was switched off, the isotropic phase
reappeared within seconds. Such an enhancement of a liquid crystal phase,
linear in the electric field, cannot be understood invoking only quadrupolar
order. However, it can be understood by assuming that the ‘isotropic’ phase is
actually tetrahedratic. (This allows for a transition into the genuine isotropic
phase at an even higher temperature). The classical orientational order pa-
rameter, Qij, can then arise because of a coupling between the tetrahedratic
order parameter, Tijk, and an external electric field, E [2].

In the second example, left and right handed chiral domains have been re-
ported for a nematic phase in compounds composed of achiral bent-core
molecules [6,7]. Very recently the Hull group has seen this behavior for an-
other class of compounds as well [8,9]. Here we show that by including in the
free energy a term coupling quadrupolar orientational order with tetrahedratic
octupolar order provides an explanation for ambidextrous chirality. This term
contains one spatial gradient and leads to an overall energy reduction that is
the same for left and right handed helices. As a result, achiral banana liquid
crystals can show coexisting left and right handed domains.

Clearly the classical way of obtaining spontaneous twist as in cholesteric (chiral
molecules with no positional order) or chiral smectic liquid crystals (layered i.e.
1D positional order) [10] does not apply to achiral banana compounds. The key
issue is: how does this picture change when going to liquid crystalline phases
formed by achiral banana-shaped molecules? Being achiral, in the absence of
an external field, a pseudoscalar corresponding to a helix structure cannot be
associated with terms involving only one gradient.

Starting with the prediction of liquid crystalline phases with lower symmetries
composed of achiral bent-core molecules [11], the field of banana liquid crys-
tals rapidly expanded [15,12,17,16,13,14,18–21]. In particular, the B7 phase
[14], whose ground state is still puzzling, attracted a great deal of attention
[17,14,13,18,16,19,22–26] because it exhibited effects not observed in classical
liquid crystal phases. Stimulated by the experimental observations on the B7
phase, as well as by the multitude of new liquid crystalline phases formed by
banana-shaped molecules in general, the issue of possible tetrahedratic order
and its consequences came into focus (Fig. 1). It became clear that quadrupo-
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Fig. 1. The tetrahedratic order parameter, Tijk, lacks inversion symmetry. (a) is the
Fel orientation [3] (b) Tijk is oriented with n1 ‖ ẑ. Applying a field, E ‖ ẑ, results
in uniaxial orientational order ‖ ẑ [2].

lar order alone was not enough to organize phenomena observed in achiral
banana liquid crystals [1,2,28,27]. Tetrahedratic Banana Liquid Crystals thus
opens a new field of Complex Materials Research.

2 Phase transitions induced by an electric field

The order parameter of a tetrahedratic phase is a third rank tensor,

Tijk = Σ4
α=1n

α
i nα

j nα
k (1)

with α = 1, 2, 3 or 4 [3] (Fig. 1). Tijk is symmetric in all indices and odd under
parity.

At first, static properties of the tetrahedratic phase were studied [3]. In
refs.[3,27,28], the tetrahedratic-nematic phase transition and possible nematic
phases were investigated using a Landau expansion and renormalization group
analysis. Following our observations on the B7 phase [23,24], we analysed tetra-
hedratic dynamics under fields and flow [1]. This was the first hint of the large
variety of symmetry allowed coupling terms available to Tijk. Very recently,
in the framework of macroscopic dynamics, we studied what happens to a
tetrahedratic phase should it be deformable, i.e. a phase that is tetrahedratic
in the absence of an electric field, but for which external electric fields and
flows can change the tetrahedral angles [2].

We now focus on the remarkable observation described in [5], using a DC elec-
tric field, where it was possible to induce a liquid crystalline phase up to about
10K above the isotropic-liquid crystal phase transition temperature, T 0

c in the
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field-free case. To leading order, the generalized energy of the tetrahedratic
phase takes the form

ft = f0 + fT + fQ − ΓTijkEiQjk (2)

where we consider only spatially homogeneous terms. Later, in the discussion
on ambidextrous chirality, we include terms containing one spatial gradient. f0

is associated with terms not containing Tijk or the usual quadrupolar orienta-
tional order parameter, Qij [4]. fT contains the usual terms that are quadratic
and quartic in T [3,27,28] and fQ has the form

fQ =
ε

2
QijQij + O(Q3). (3)

Terms of cubic and higher order, well-known from studies of the isotropic-
nematic phase transition [4], are not explicitly written here because we as-
sume that we start out in the tetrahedratic phase so only need lowest order
coupling terms. The last term in Eq.(2) is new and couples an electric field
to the tetrahedratic order parameter, Tijk, and the usual orientational order
parameter, Qij. Its coefficient, ∼ Γ, is a true scalar, as Qij is even under par-
ity while both, Ei and Tijk are odd under parity. This term does not exist for
magnetic fields which are even under parity and odd under time reversal.

To investigate the implications of this coupling term, we analyze what happens
when an electric field is applied to an optically isotropic tetrahedratic phase.
Minimizing Eq.(2) with respect to Qij we find

Qij =
Γ

ε
EkTijk. (4)

To make this result more explicit, we consider an electric field applied ‖ ẑ,
E = E0ẑ. For the four unit vectors of the tetrahedratic phase we use the
[2] orientation (Fig. 1b), which minimizes the energy [2], where n1 is also
‖ ẑ: n1 = (0, 0, 1), n2 = 1

3
(−
√

2,−
√

6,−1), n3 = 1
3
(−
√

2,
√

6,−1) and n4 =
1
3
(2
√

2, 0,−1). Then from Eq.(4), we obtain for the diagonal elements of Qij:

Qxx = Qyy = −1

2
Qzz =

4Γ

9ε
E0 (5)

while all off-diagonal elements of Qij vanish. The structure of Eq. (5) is that of
a uniaxial nematic [4]. Depending on the sign of Γ the induced nematic order
is rod- or disk-like (Fig. 1b).

From this analysis, we arrive at three main conclusions: 1) the application
of a DC electric field to an optically isotropic tetrahedratic phase leads to
the generation of quadrupolar orientational order of the type familiar from
nematic liquid crystals formed by rod/disc-shaped molecules; 2) the degree
of induced orientational order is proportional to the strength of the applied
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electric field, E0; and 3) putting ε = εo(T
E
c −T 0

c )/T 0
c , we find the enhancement

in the liquid crystal transition temperature, ∆Tc ∼ E0, as observed [5].

Once quadrupolar order is established, it is well documented which conditions
must be met in a Landau approach to obtain simultaneously a density wave
thus giving rise to a smectic phase. Depending on the coefficients one gets a
transition from an isotropic phase to a nematic phase, a smectic A phase or
a smectic C phase [29]. Birefringence found in [5] suggests that a tilted phase
is present.

We note that the explanation of the field-induced transition given in [5] does

not apply, since it uses a ~P · ~E term. In an optically isotropic system, there
can be no vector like ~P , which would make the phase uniaxial and no longer
isotropic. In addition, we are not dealing with a ferroelectric phase transition,
where ~P would be the order parameter.

In summary, the application of an electric field to an isotropic tetrahedratic
phase induces quadrupolar orientation order i.e. an optically uniaxial or biaxial
phase. Thus, the experimental observations in [5], find an explanation if the
‘isotropic’ phase observed in [5] is actually tetrahedratic. To test this, it would
be important to study the ‘isotropic’ phase as well as the field-induced liquid
crystal phase by, for example, x-ray investigations of well oriented samples.
Furthermore we suggest measuring directly the quadrupolar order parameter
as a function of the electric field, ~E, would confirm the validity of eq.(5).
An additional tool to distinguish between an optically isotropic tetrahedratic
phase and a truly isotropic liquid would be the observation of second harmonic
generation (SHG). In contrast to a truly isotropic phase, SHG can occur in
an isotropic tetrahedratic phase because it lacks inversion symmetry.

3 Ambidextrous chirality: Counter-rotating helices of tetrahe-
dratic and quadrupolar order

We now turn to the challenge posed by ambidextrous chirality. First we
recall that classical cholesteric phases composed of chiral molecules are never
ambidextrous. Rather, the director, n, spontaneously twists always with a
preferred hand. Taking the helix wave vector qo ‖ ẑ (qo > 0 describes a
right handed helix), we put n = (cos qoz, sin qoz, 0) and Qij = Q(T )(ninj −
1
3
δij) to get an additional term in the generalized energy [4,10] of the form

fchol = K2qoεijkQi`∇kQj` = K2qon · (∇× n). K2 is the twist elastic constant
and qo = 2π/Po with Po the helix pitch. Here, qo is a pseudoscalar because
cholesterics have no mirror planes.

In the following we assume that the existence of tetrahedratic order is impor-
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tant for nematic phases formed by banana-shaped molecules and we explore
possible gradient terms in the generalized energy, in particular a coupling
between the tetrahedratic order parameter, Tijk, and the orientational order
parameter, Qij, containing only one spatial gradient.

Without an external electric field, we find one such cross-coupling term

fgrad = DTijk∇kQij. (6)

The structure of this new contribution [30], Eq.(6), is clearly very different
from the spontaneous twist term familiar from cholesterics [10]. A pseudoscalar
such as qo does not emerge. The coefficient, ∼ D, is a true scalar as Tijk and
∇kQij are odd under parity. A hand is not associated with Eq.(6) and the
phase is achiral.

To check if Eq.(6) provides an explanation for the observation of the coexis-
tence of left and right handed chiral domains (ambidextrous chirality) in the
nematic order parameter Qij, we start with a helical director (with pitch q
and arbitrary phase shift φ with respect to the orientation of the tetrahedra):
n = (cos[qz + φ], sin[qz + φ], 0). Next we rotate the tetrahedratic (Fig. 1a)
also about the ẑ axis, but by kz, and get the only non-vanishing elements
for Tijk: T113 = − 4

3
√

3
sin 2kz, T223 = 4

3
√

3
sin 2kz and T123 = − 4

3
√

3
cos 2kz.

Finally, we evaluate the expression Tijk∇kQij using the rotating tetrahedratic
and director given above to get:

DTijk∇kQij = − 8

3
√

3
Dq cos(2qz + 2kz + 2φ). (7)

For q = −k, Eq.(7) is a scalar invariant of the energy density:

DTijk∇kQij = − 8

3
√

3
Dq cos(2φ). (8)

Physically, Eq.(8) describes two counterrotating helices (Fig. 2). If the helix
for Qij is right-handed, the helix for tetrahedratic order is left-handed and
vice-versa.

To check the energy change relative to the homogeneous state associated with
the formation of two counter-rotating helices, we analyse the energy up to
quadratic order in the gradients:

F = F0 + DTijk∇kQij + γ(∇kQij)
2 + δ(∇kTijl)

2 (9)

where F0 contains the spatially homogeneous terms in Tijk and Qij. Minimiza-
tion with respect to the wave vector, q, gives the result

qc =
2D

3
√

3

cos(2φ)

γ + 64δ/27
(10)
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Fig. 2. A quarter pitch left-handed rotation for the isotropic tetrahedratic (1, 2, 3
and 4 refer to the vectors in Fig. 1a) and a right-handed rotation of discs/rods for n
(2-headed arrow) shown in the x̂-ẑ-plane (φ = 0). (a) qz = 0: n is in the x̂-ẑ plane
and ±π/4 to the projections of the [2,3] and [1,4] tetrahedratic 2-fold axes in this
plane. (b)qz = π/4: the [1, 4]-2-fold axis is in the x̂-ẑ plane and the [2, 3] 2-fold axis
is ⊥ to it. (c)qz = π/2: n is ⊥ x̂-ẑ plane.

which is a wave vector directly proportional to D – or, equivalently, a length
scale that diverges for D → 0. Inserting the value for qc in Eq. (9) we find an
energy reduction, ∆f = −8D2 cos2(2φ)/(27γ+64δ), independent of the sign of
D. This energy reduction is maximum (the energy minimum) for cos 2φ = ±1,
or a phase shift of 0 and π/2 between the (opposite) rotations of Qij and Tijk.
The two cases belong to two different hands of qc (Eq. 10), but equal |qc|.

We have shown that the generation of counter-rotating helices for the usual
orientational order parameter, Qij, and the tetrahedratic order parameter,
Tijk, leads always to a reduction of the energy provided tetrahedratic order is
present. Both hands are equally likely for Tijk and Qij with the same reduction
in energy. This provides an explanation for the observations described in [6–8].

The contribution from the rotation of Tijk to optical anisotropy is presumed
to be very small as without a helix structure, Tijk is optically isotropic. As a
result, the anisotropy of the refractive index for this system is dominated by
the orientational order parameter Qij.
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From this analysis, we conclude that the coexistence of left-handed and right-
handed chiral domains is compatible with the simultaneous presence of tetra-
hedratic and the classical orientational order. With only orientational order
and achiral molecules, co-existing chiral domains of both hands cannot be
explained.

Cubic terms that could produce lock-in between orientations contained in Qij

and Tijk, for example, QijTiklTjkl, must vanish identically. This is because a
nontrivial second rank tensor cannot be constructed out of Tijk [31], thus,
TiklTjkl ∼ δij. And, as Qij is traceless, δijQij ∼ 0.

We point out that the analysis given for the lowest order gradient terms can
be carried over to orthorhombic non-polar biaxial nematic phases as well as to
biaxial orthogonal fluid smectic phases [9]. If one observes ambidextrous chiral
domains in a material composed of nonchiral molecules, then the coupling
mechanism presented above can apply. One candidate for this type of behavior
has been discussed very recently by the Hull group for a ‘smectic C type’ liquid
crystal phase [32].

In contrast to other work on chiral phases for tetrahedratics [28] we deal with
achiral phases. In the present manuscript we have shown that counter-rotating
helices for tetrahedratic and quadrupolar order can reduce the energy of the
system due to a linear gradient term not considered before. In ref.[28] chiral
phases have been considered with a fixed sense of rotation of the helices in
each given phase.

4 Conclusions and perspective

We have discussed two coupling terms between the classical quadrupo-
lar orientation order parameter and an isotropic octupolar order parameter.
We found that an electric field can induce a liquid crystal phase in a tetra-
hedratic liquid which is optically isotropic when the field is turned off. This
analysis provides an explanation for recent experimental observations of a field
induced enhancement (up to 10K) of the isotropic - liquid crystal transition
temperature. In addition, we found that for a nematic phase where quadrupo-
lar and tetrahedratic order coexist, the lowest order gradient term leads to
the induction of counter-rotating helices of the two types of order. As this
structure is energetically more favorable than the uniform state, chiral do-
mains of both hands can spontaneously appear giving rise to ambidextrous
chirality. While this result provides an explanation - the only one known -
for the recent experimental observation of ambidextrous chirality in various
nematic phases formed by achiral banana-shaped molecules, it applies to any
system where tetrahedratic and quadrupolar order may simultaneously exist
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including layered and columnar liquid crystalline phases, biologically relevant
lyotropic liquid crystals and colloidal suspensions.
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