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Flow properties of the optically isotropic tetrahedratic phase
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Abstract. We discuss the coupling between flow and other hydrodynamic variables that can occur in the
optically isotropic tetrahedratic phase (Td) characterized by a third rank tensor order parameter Tijk. We
point out that an applied electric field or an applied temperature gradient will lead to flow. Reciprocally
we predict that, for example, a shear flow applied to a tetrahedratic phase leads to an induced electric
field and a temperature gradient. Similarities to recent experimental observations in the vicinity of the
isotropic - B7 phase transitions in materials formed by banana-shaped molecules are discussed.

PACS. 61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order –
64.70.Md Transitions in liquid crystals – 05.70.Ln Nonequilibrium irreversible thermodynamics

1 Introduction

Recently the liquid crystalline phases formed in com-
pounds composed of achiral banana-shaped molecules
have attracted considerable attention [1–13]. One of the
most puzzling phenomena observed in this area is the
phase transition from an optically isotropic liquid phase
to the B7 phase [9,14] for which neither the symmetry nor
the properties of the ground state are understood. It is
not a well formed smectic phase, since one cannot draw
freely suspended films in it. Instead these films decompose
into strands [14]. In addition, x-ray investigations give rise
to many diffraction peaks that could not be indexed by a
standard smectic or columnar phase known to form for
many other low molecular weight liquid crystalline com-
pounds [14]. We also note that so far one has not success-
fully grown large monodomains in the B7 phase, which
are essential for systematic high resolution x-ray investi-
gations. Instead, one has optically observed many differ-
ent patterns on cooling including spirals of both hands
growing into the isotropic phase, myelinic patterns and
patterns showing spatial modulations, sometimes regular,
in a second direction [9, 14]. Recent experiments on the
effect of an external electric field and of temperature vari-
ations have also revealed the occurrence of flow close to
and in the isotropic phase near the B7 - isotropic phase
transition [15].

Consequently, there is a need to look for models
which can describe the B7 phase and its transition to the
isotropic phase. From a general perspective, the question
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to what extent phases that are optically isotropic but not
cubic can show coupling effects between flow and electric
fields and/or temperature gradients has never been ad-
dressed. It is the goal of this manuscript to analyze the
macroscopic behavior of such a phase with high symmetry,
namely the tetrahedratic phase of Td symmetry, which has
been studied recently mainly in connection with its phase
transition behavior [16–18].

2 Hydrodynamics of the tetrahedratic phase

For the tetrahedratic phase one has the same hydrody-
namic variables as for an isotropic liquid, namely the den-
sity, ρ, the energy density, ε, the density of linear momen-
tum, gi, and, in mixtures, the concentration, c. In addi-
tion one has a third rank tensor Tijk characterizing the
tetrahedratic order. Tijk is symmetric in all indices and
traceless Tiik = 0, i.e. it does not contain any vectorial
quantity. Since it transforms under an l = 3 representa-
tion, it is odd under parity and thus allows coupling terms
not possible in ordinary simple liquids.

The statics of a macroscopic system is governed by its
free energy. For an isotropic fluid the free energy density,
in harmonic approximation, is [19,20]
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where the static susceptibilities contained in (1) are the
specific heat (at constant density) CV , the isentropic com-
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pressibility κs, the adiabatic volume expansion coefficient
αs and the appropriate susceptibilities γ, βσ and βρ re-
lated to the concentration instead of the total mass den-
sity.

Due to the Gibbs relation (the local manifestation of
the first and second law of thermodynamics)

df = µdρ + T dσ + µc dc (2)

the conjugate quantities follow from the free energy den-
sity by partial differentiation

δT ≡ ∂f
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δµc ≡ ∂f

∂c
= γ δc + βσδσ + βρδρ (5)

The pressure is related to the other conjugate quantities
by the Gibbs-Duhem relation [21]

δp = ρδµ + σδT − µcδc (6)

neglecting contributions quadratic in the velocity.
For the statics of tetrahedratics, we find for the free

energy density

f = f0 + ε1TijkDiDjDk + ε2TijkDiHjHk + fT (7)

where f0 denotes the free energy density of the isotropic
fluid given in eq.(1) and where fT denotes the density
of the analogue of the Frank energy for the tetrahedratic
phase discussed by Fel [16]. We note that the term cubic
in the dielectric displacement field D in eq.(7) has been
given first in [16], where also its physical implications have
been studied in detail. The term quadratic in the magnetic
field H presented in eq.(7) has been overlooked and is not
possible in a simple liquid for parity reasons.

For a simple liquid, one has as hydrodynamic variables
- as already mentioned briefly above - the density ρ, the
momentum density ρv related to the velocity v, and the
entropy density σ, or equivalently the free energy density
f . In the case of mixtures one has as an additional con-
served quantity the concentration c. The hydrodynamic
equations are [19–21](
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where we have also included the dynamic equation for the
electric charge density ρe.

The densities of the currents for heat jσ, concentration
jc, electric charge je, and momentum σij are

σij = pδij − νijkl∇lvk (13)

jσ
i = −κij∇jT − DT

ij∇jµc − κE
ijEj (14)

je
i = σE

ijEj + DE
ij∇jµc + κE

ij∇jT (15)

jc
i = −Dij∇jµc − DT

ij∇jT − DE
ijEj (16)

with the Kronecker symbol δij .
The heat conduction tensor, κij , the electric conduc-

tivity tensor, σE
ij , the diffusion tensor, Dij , as well as ther-

modiffusion tensor, DT
ij , (related to the Soret/Dufour ef-

fects), the thermoelectric tensor, κE
ij , and its analogue for

concentration variations, DE
ij , are symmetric and have the

following form containing together six coefficients, includ-
ing, thermal conductivity, diffusivity and Soret/Dufour,

κij = κδij (17)

and the fourth rank viscosity tensor contains three vis-
cosities [22,23]

νijkl = η1(δjlδik + δilδjk − 2
3
δijδkl)

+η2TijpTklp + ζδijδlk (18)

Since Tijk is associated with the spontaneously broken ori-
entational symmetry of the tetrahedratic phase, it serves
as an additional hydrodynamic variable [20] and leads to
the following quasi-conservation law for Tijk

Ṫijk + Yijk = 0 (19)

As usual the reversible and the dissipative parts of the
quasi-current, Yijk, are expanded into thermodynamic
forces, that is, the gradients of eqs.(3-5), δf/δTijk, and
Aij = 1

2 (∇ivj + ∇jvi). Since Tijk is not directly observ-
able, we refrain from writing down explicitly all expres-
sions, but concentrate on the cross-coupling terms of Tijk

to other hydrodynamic variables. When comparing the
tetrahedratic phase to an ordinary isotropic phase in the
dynamic regime, we have for the additional reversible cur-
rents

σR
ij = · · · − Γ1TijkEi − Γ2Tijk∇iT − Γ3Tijk∇ic (20)

je
i

R = · · · + Γ1TijkAjk (21)

jσ
i

R = · · · + Γ2TijkAjk (22)

jc
i
R = · · · + Γ3TijkAjk (23)

From inspecting eqs.(20–23), we see that velocity gradi-
ents - including shear and extensional flows - couple to
electric fields as well as temperature and concentration
gradients. The experimental consequences of these cross
coupling terms will be investigated in more detail in the
next section.

For the irreversible contributions, we have in the en-
tropy production in addition

R = · · · + Ψ1TijkEiMjMk + Ψ2TijkEiEjEk (24)
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Inspecting eq.(24) in detail, it is clear that these terms are
the dissipative analogues of the two cubic static contribu-
tions given in eq.(7) above.

3 Experimental consequences

A number of implications for the static term cubic in the
field (eq.(7)) has been discussed in the paper by Fel [16].
In this section, we outline some of the simple experimen-
tally testable predictions to enable a distinction between
the novel tetrahedratic phase and the usual isotropic liq-
uid.

We focus on the implications of the reversible dynamic
cross-coupling terms presented in eqs.(20–23) of the last
section. Applying, for example, a simple shear flow in the
y − z-plane, that is Ajk = Sδjyδkz with the shear rate S,
to a tetrahedratic phase, we read off from eq.(22) that this
results in a reversible heat current of the form

jσ
i

R = Γ2TiyzS (25)

Making use of the explicit form of Tijk [16], this leads to

jσ
x

R = Γ2
4S

3
√

3
(26)

and vanishing components jσ
y

R and jσ
z

R. This result shows
that a shear flow applied in a given plane leads to a heat
current in the direction perpendicular to this plane. Anal-
ogously we obtain from eq.(21)

je
x

R = Γ1
4S

3
√

3
(27)

and je
y

R = 0 and je
z

R = 0. This demonstrates that there
is, in addition to the heat current, also a reversible elec-
tric current set up in the direction perpendicular to the
shear plane. The same applies for the appearance of a con-
centration current in mixtures: in a tetrahedratic phase
a shear flow leads to a segregation of the subspecies in-
volved.

Reciprocally, one can apply an electric field or a tem-
perature gradient (or a concentration gradient) to a sam-
ple in the tetrahedratic phase and ask how the flow behav-
ior is affected. Applying, for example, an electric field E
in the z− direction, one obtains for the only non-vanishing
component of the stress tensor (eq.(20))

σR
yx = σR

xy = −Γ1
4Ez

3
√

3
(28)

This result shows that an electric field applied in a spe-
cific direction gives rise to a shear stress in the plane per-
pendicular to this direction. And this shear stress can in
turn lead for spatially varying situations - via the dynamic
equation for the linear momentum density or the velocity
field - to a flow in the plane perpendicular to the direction
of the applied field. The same applies to external gradi-
ents of temperature and concentration. As an example

Fig. 1. Plot demonstrating the effect of the cross-coupling
term ∝ Γ1 between an electric field, E, and flow in the plane
perpendicular to the electric field in the case of extensional
flow. The view on the left is along the electric field, E, with
E ‖ ẑ ‖ n1 (where n1 denotes one of the tetrahedral directions
using the notation of Fel [16]). On the right we have plotted
a three-dimensional view of both, the flow pattern and the
tetrahedral directions. In a simple isotropic fluid, an electric
field cannot generate any flow and vice versa.

we have plotted in Fig.1 the case of an electric field in
the ẑ-direction and of pure extensional flow in the x̂ − ŷ -
plane.

An important implication of the new reversible dy-
namic contributions discussed here, is that the analysis of
the electric Frederiks transition must include also dynamic
effects. A static analysis based on energy considerations
only as that given in [16] is insufficient for the tetrahe-
dratic phase.

4 Similarities to phenomena observed in the
vicinity of the B7 - isotropic transition

In the last section we discussed how the new terms in the
tetrahedratic phase coupling flow to an external electric
field as well as to temperature gradients could be experi-
mentally detected. Here we suggest that a good candidate
for the tetrahedratic phase may be the isotropic liquid
state above the B7 phase for the following reasons.

First of all, we note that all experiments undertaken
so far show, that the B7 phase has several types of local
order. This includes some degree of positional order, be
it smectic or columnar. Simultaneously, with the onset of
translational order there is also an onset of orientational
order - typically characterized by the order parameter Qij ,
a traceless second rank tensor [24, 25]. Therefore to de-
scribe the isotropic - B7 phase transition minimal ingredi-
ents include order parameters for the onset of translational
and orientational order, just as for the only recently stud-
ied case of the smectic A - isotropic phase transition in
Landau approximation [26].

Second, the transition enthalpy observed at the B7
- isotropic transition [14, 15] is comparable to that typ-
ically obtained for isotropic - columnar phase transitions
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in other classes of low molecular weight materials includ-
ing compounds made of pyramidic molecules [27]. This
points to the fact that major rearrangements in the de-
gree of order take place at this transition.

Third, one observes pronounced dielectric behaviour
along with flow [15]. A completely open question for the
B7 phase is the role and importance of a macroscopic po-
larization, P. There appears to be no conclusive experi-
mental evidence as yet for the occurrence of a substantial
linear electro-optic effect.

The most significant similarity is clearly the response
of the isotropic phase in the vicinity of the isotropic -
B7 phase boundary. Applying an electric field leads to
hydrodynamic flow of significant strength [15]. When the
field is turned off, this flow subsides. The same is true for
temperature variations. When temperature changes are
applied to a sample in the vicinity of the isotropic - B7
phase transition, this leads again to a considerable amount
of flow, which stops after the temperature gradients have
disappeared [15]. Such phenomena are not observed at
the phase transitions between the isotropic phase and a
large number of other liquid crystalline phases including,
for example, nematic, smectic A, smectic C, smectic B
and hexagonal columnar phases.

To decide unequivocally whether the isotropic phase
above the B7 phase is actually a good candidate for the
tetrahedratic phase or not, two steps seem to be impor-
tant. First, the nature of the ordering in the B7 phase
must be identified, in particular with respect to the ex-
istence of a macroscopic polarization P. And second, it
would be crucial to investigate in detail the behavior of the
isotropic phase above the B7 phase under external electric
fields and temperature gradients in the absence of the B7
phase.
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