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Abstract. We study the influence of macroscopic chirality on the macroscopic properties of superparamag-
netic liquid crystals and gels. Specifically we derive macroscopic dynamic equations for ferrocholesteric low
molecular weight (LMW) liquid crystals and for ferrocholesteric gels and elastomers in the local description
using the director field as macroscopic variable. The magnetization is treated as a macroscopic dynamic
degree of freedom and its coupling to all other macroscopic variables is examined in detail. We incorporate
into our dynamic analysis terms that are linear in a magnetic field giving rise to a number of cross-coupling
terms not possible otherwise. A number of properties that are unique to the class of systems studied arise.
As an example for a static property we find a term in the generalized energy which is linear in the electric
field and quadratic in the magnetic field. We find that applying a magnetic field to a ferrocholesteric can
lead to reversible electric currents, heat currents and concentration currents, which change their sign with
a sign change of macroscopic chirality. As an example of a rather intriguing dissipative dynamic contribu-
tion we point out that for ferrocholesterics and for ferrocholesteric gels and elastomers in a magnetic field
extensional flow leads to electric and heat currents.

1 Introduction

The first liquid crystalline phase discovered were
cholesteric liquid crystals [1]. Early on it was recog-
nized [2] that this phase has rather unique dynamic prop-
erties such as a rotation of its superstructure in droplets
in a temperature gradient [2]. Cholesteric liquid crys-
tals are characterized by a macroscopic helical superstruc-
ture breaking mirror and thus parity symmetry macro-
scopically [3, 4]. As a consequence low molecular weight
(LMW) cholesteric liquid crystals possess a large num-
ber of rather unique optical and flow properties (compare
refs. [3] and [4] for a review).

Over the decades, however, other liquid crystalline
phases formed by LMW materials such as nematics (which
have 3 D long range orientational order), smectics and
columnar phases (showing density waves in one and two
spatial dimensions, respectively) attracted more atten-
tion by chemists and physicists, in particular due to their
large scale applications in fields like soaps (lyotropic multi-
component systems) and liquid crystals displays (LCDs).

The properties of LMW liquid crystal phases were
combined with those of another large class of complex flu-
ids, namely polymers, when in 1978 Finkelmann, Rings-
dorf and Wendorff [5] synthesized side chain liquid crys-
talline polymers for which the mesogenic units (liquid
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crystalline building blocks) are attached via a flexible
spacer to the polymeric backbones and started the field
of liquid crystalline sidechain polymers. Shortly there-
after Finkelmann and his collaborators started [6] and
generated the field of liquid crystalline elastomers and
gels [6–13] by cross-linking liquid crystalline polymers.
Liquid crystalline elastomers and gels combine the prop-
erties of liquid crystals with those of rubbers and gels [12].
De Gennes pointed out that for this class of materials rel-
ative rotations between the network and the director field
form a new category of macroscopic variables [14]. Over
the last two decades or so relative rotations as macroscopic
variables were incorporated into the macroscopic dynamic
description of liquid crystalline elastomers [15]. In addi-
tion, Menzel et al. demonstrated that the nonlinear gen-
eralization of relative rotations [16] plays a crucial role in
describing the nonlinear reorientation behavior of the ne-
matic director under an external mechanical force [17–20].

Magnetic liquids [21], suspensions of magnetic mon-
odomain particles whose properties can be tuned and
controlled by fairly small magnetic fields [22–30], consti-
tute another class of complex fluids, which has been in-
vestigated in quite some detail already. Because of its
large response to small magnetic fields, Brochard and de
Gennes [31] suggested to synthesize ferronematics com-
bining the properties on nematics and magnetic liquids.
In the following there was a number of experiments com-
bining these magnetic liquids and various types of liquid
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crystalline phases [32–40]. These experiments also led to
the investigation of the macroscopic properties of the com-
bination of nematic LMWs and magnetic liquids [31–42].
Essentially all experimental studies in this field gave rise to
materials which were superparamagnetic just as the usual
magnetic liquids [21]. Quite recently, however, Mertelj et
al. were able to provide convincing evidence experimen-
tally of ferromagnetic order in a new type of ferronemat-
ics [43,44].

Quite similarly as for liquid crystals and liquid crys-
talline elastomers, Zrinyi’s group combined magnetic liq-
uids and gels to synthesize and characterize isotropic mag-
netic gels, which reveal substantial deformations under
moderate external magnetic fields [45–48]. Physical prop-
erties in the macroscopic regime [49] as well as in the meso-
scopic regime [50] have also been characterized. Later uni-
axial magnetic gels were produced when the cross-linking
was done in a magnetic field [51, 52] thus giving rise to
a new class of anisotropic materials [51–53]. For these
uniaxial materials relative rotations between the elastic
and magnetic degrees of freedom turn out to be of crucial
importance [54,55].

In the present paper we investigate the macroscopic
behavior of ferrocholesterics as well as of ferrocholesteric
gels and elastomers making use of the local description
in which the director is used as a macroscopic variable.
In contrast to the strictly hydrodynamic description [56],
for which there is only one truly hydrodynamic variable,
the director used in the local description in the litera-
ture [3, 4] also contains one macroscopic quantity, which
relaxes on a long, but finite time scale [56–58]. There-
fore we will use the same set of macroscopic variables as
for the ferronematic case discussed recently [59], we will
assume that the system does not order ferromagnetically
(that is it does not have a permanent magnetization) and
we will also restrict ourselves to the case of sufficiently
weak external magnetic fields. Based on these assump-
tions, we can make use of our previous work modeling the
macroscopic behavior of nematic elastomers [15], ferrone-
matics [41, 42], isotropic ferrogels [49], uniaxial magnetic
gels [54] and ferronematic gels and elastomers [59].

We point out that the equations derived contain as a
special case LMW ferrocholesterics as well as cholesteric
gels and elastomers. For these two classes of materials a
complete set of macroscopic dynamic equations has not
been given before either. While there appear to be no
experimental studies as yet on ferrocholesteric gels and
elastomers, ferrocholesteric LMWs [60–67] (and references
therein) and cholesteric elastomers [12, 68–72] (and refer-
ences therein) have been the subject of experimental and
theoretical investigations already.

We find here that there is a number of novel cross-
coupling terms in all three domains: statically as well as
for the reversible and the irreversible currents. They are
all intrinsically connected to the existence of the pseu-
doscalar quantity q0 associated with the helical super-
structure. In some cases we also find that terms which
are in addition linear in a magnetic field allow for intrigu-

ing coupling terms, for example between the molecular
field of the director and electric and heat currents.

The present paper is organized as follows. In section
2 we describe the choice of the macroscopic variables, the
statics and the thermodynamics. In section 3 we derive
the resulting dynamic macroscopic equations. In section
4 we investigate some simple solutions of the macroscopic
equations presented. Finally we present in section 5 a
brief summary and conclusions. In two appendices we
give reversible and dissipative dynamic contributions to
the macroscopic dynamics of ferrocholesterics and of fer-
ronematics, which are linear in a magnetic field. This type
of terms has never been discussed before for gels and elas-
tomers. In a third appendix we discuss how the terms
related to broken mirror symmetry influence the rheolog-
ically relevant macroscopic quantities elastic stress and
stress tensor.

2 Statics and thermodynamics

To derive macroscopic equations for ferrocholesterics and
ferrocholesteric gels and elastomers we generalize suit-
ably the macroscopic dynamics of ferronematics derived in
ref. [42] and for ferronematic gels and elastomers given re-
cently [59]. Here we concentrate on the chiral aspects that
are manifest by the existence of a pseudoscalar quantity,
q0, in the cholesteric phases. Under spatial inversion q0
changes sign meaning that after inversion the phase is not
identical to the original one. This handedness is the hall-
mark for chirality. The parameter q0 is considered a given
material property of the cholesteric phases, and it can
depend on the (scalar) state variables, like temperature,
density or concentration. It is not necessarily related to
a molecular chirality ref. [72], but can also be introduced
by a low symmetry structure in a given phase that allows
both types of handedness to exist and to be energetically
equivalent, a feature called ambidextrous chirality [73,74].

According to the Eulerian description we use local
fields, i.e. volume densities that depend on space and
time, as dynamic state variables. Some of these variables
are associated with local conservation laws including for
ferrocholesterics mass density (ρ), density of linear mo-
mentum (g), generalized energy density (ε) and the con-
centration of the magnetic particles (c). In lyotropic sys-
tems one could also take into account additionally the
concentration of the solvent cS without changing the ma-
jor results, since it has the same transformation behavior
as c and thus makes the same type of coupling terms.

Here we use the local description of cholesteric liquid
crystals making use of the director field n(r, t) [3, 56, 57].
While the director variations δn are associated with the
two spontaneously broken orientational symmetries in a
nematic, only one of them is strictly hydrodynamic in a
cholesteric liquid crystal [56]. Nevertheless both indepen-
dent components of the director are macroscopic variables
as long as the pitch of the cholesteric helix is sufficiently
large compared to the molecular length. The director is a
unit vector and due to its special symmetry all equations
have to be invariant under the replacement n→ −n.
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The magnetization M = Mm is associated with ro-
tations δm as well as changes in the absolute value δM .
This variable is not associated with any conservation law,
nor with a broken symmetry, but relaxes slowly to its equi-
librium value. Due to the presence of a network the strain
tensor εij arises as a macroscopic variable; in its linearized
version it takes the form εij = 1

2 (∇iuj + ∇jui) with the
displacement field ui. Due to the simultaneous presence of
a network as well as of the variables δni, relative rotations
Ω̃i as pioneered by de Gennes [14] for nematic elastomers
become an important macroscopic variable, which can also
be introduced via Ω̃i = δni−Ω⊥i as for the case of nematic
liquid crystalline elastomers [15], where Ω⊥i = njΩij with
niΩ

⊥
i = 0, Ωij = 1

2 (∇iuj −∇iui) and niδni = 0. Relative
rotations are not truly hydrodynamic variables, but relax
slowly enough to be considered here.

For the magnetic degrees of freedom we consider the
case without a permanent magnetization M0. We also
assume external fields, electric or magnetic, to be weak,
in the sense that they do not change the symmetry of
the phase. The case of true ferromagnetism or a strong
magnetic external field will be considered elsewhere. We
thus have the magnetization Mi as a variable slowly relax-
ing to zero. To satisfy Maxwell’s equations we take into
account the magnetic induction B. To accommodate ex-
ternal electric fields we use the electric displacement field
D.

We use as a starting point the local formulation of the
first law of thermodynamics [58,75–77] relating changes of
the entropy density σ to all other macroscopic variables.
The underlying assumption in this connection is that all
microscopic variables are relaxing much faster and are in
equilibrium already. We have

Tdσ = dε− µdρ− µcdc− vidgi −WdS
−HidBi − hMi dMi − hn′i dni − Φijd(∇jni)
−ψijdεij − L⊥i dΩ̃i − EidDi (1)

where all macroscopic variables are connected to the en-
tropy density σ and where we have also taken into account
the degree of orientational order, S in writing down eq.(1).
The thermodynamic forces entering eq.(1) are chemical
potential (µ), temperature (T ), relative chemical poten-
tial (µc), nematic molecular fields (Φij , h

n′
i ), velocity (vi),

magnetic Maxwell field Hi, the magnetic molecular field
(hMi ), the ‘order molecular field’ (W ), the elastic stress
(ψij) and the ‘relative molecular field’ (L⊥i ) associated
with relative rotations, and the electric field (Ei).

The thermodynamic forces and thus simultaneously
the static properties of ferrocholesterics and ferro-
cholesteric gels and elastomers are obtained by expand-
ing first the generalized energy density into the macro-
scopic variables and then, in a second step, by taking the
variational derivatives with respect to one variable while
keeping all other variables fixed [58].

We will not repeat the derivation of the static prop-
erties of (achiral) ferronematic elastomers, which can be
found in Ref. [59]. Only those parts that are needed for the
discussion in Sec. 4 will be shown there. We only want
to mention that there are (achiral) static crosscouplings

between the strain and all scalar variables (including the
nematic order) as well as the relative rotations, already
on the harmonic energy level. In cubic order the magneti-
zation is coupled statically to the director orientation, the
relative rotations and the strains.

Here we discuss the chiral part of the energy, which
comes about due to the existence of a pseudoscalar quan-
tity, q0, in cholesterics. In any system with a nematic
order chirality allows for a linear twist energy that leads
to a helical structure of the director [3]. In addition, the
twist couples to all scalar variables (static Lehmann ef-
fects) [72,78,79] and to strains and relative rotations

εch = q0L2 n·(∇× n)

− q0(τcδc+ τσδσ + τρδρ+ τSδS)n·(∇× n)

− q0τ
ε
ij n·(∇× n) δεij − q0τΩεikpnjnpΩ̃i∇jnk (2)

The pitch of the helix generally is ∼ q0 and becomes ex-
actly q0, if the coefficient of the linear twist term, L2, is
identical to the quadratic twist elastic coefficient K2 [80].
The helical axis p is perpendicular to the rotation plane
of the director in the cholesteric case. The contribution
∼ τS is associated with variations of the modulus of the
orientational order parameter and arises for all cholesteric
systems.

The contributions in the last line of eq.(2) are specific
for cholesteric elastic systems and have not been given
before. The first one represents a coupling of twist to the
strain tensor ε, where τεij takes the form

τεij = τε1ninj + τε2 δ
⊥
ij (3)

Thus this term gives rise to changes in the pitch due to uni-
axial mechanical stresses such as compression and dilata-
tion. This effect has been studied for cholesteric sidechain
elastomers in detail experimentally [70, 71]. The second
one (∼ τΩ) relates static director deformations with rela-
tive rotations.

Other static effects specific for general cholesteric elas-
tic systems are related to electric fields

εDch = q0ζ
ΩnjεijkDiΩ̃k + q0ζ

ψ
ijkDiεjk (4)

and describe electric field-induced relative rotations
(rotato-electricity [68,69]) and deformations with

ζψijk = ζψ(εijpnpnk + εikpnpnj) (5)

Since the magnetization and/or the magnetic field is odd
under time reversal, there are no static linear magnetic
field effects.

For magnetic cholesteric elastic systems there are ad-
ditional static couplings, if a magnetic field is present

εMch = q0Hi(FijkMjDk +GijklMj∇knl) (6)

coupling the magnetization to electric fields and director
deformations. The material tensor Fijk is of the form

Fαβijk = F1εijk + F2εijpnpnk

+ F3εipknpnj + F4εpjknpni (7)
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while for Gijkl one gets

Gijkl = npεlpi(G1njnk +G2δ
⊥
jk)

+ npεlpj(G3nink +G4δ
⊥
ik)

+ npεlpk(G5ninj +G6δ
⊥
ij)

+ δ⊥lp(G7nkεijp +G8njεikp +G9niεjkp) (8)

Next we give the additional chiral contributions to the
thermodynamic conjugate quantities that arise from the
chiral energy ε = εch+εDch+εMch, eqs.(2) -(6), by taking
the variational derivative with respect to the appropriate
variables

δT = −q0τσn·(∇× n) (9)

δµ = −q0τρn·(∇× n) (10)

δµc = −q0τcn·(∇× n) (11)

W = −q0τSn·(∇× n) (12)

ψij = −q0τεijn·(∇× n) + q0ζ
ψ
kijDk (13)

L⊥i = +q0εjki(ζ
ΩDj + τΩnjnp∇p)nk (14)

Ei = q0ζ
ΩnjεijkΩ̃k + q0HkFkjiMj + q0ζ

ψ
ijkεjk (15)

hMi = q0HjFjikDk (16)

hni = q0L2(∇× n)jδ
⊥
ij + q0τΩnjnpεkip∇jΩ̃k

+ q0nkεkji(τc∇jc+ τσ∇jσ + τρ∇jρ+ τS∇jS)
+ q0τ

ε
klnpεpji∇jεkl − q0HkGklji∇jMl (17)

In section 4 we will suggest experiments to observe the
consequences of some of these new static chiral terms.

3 Dynamics

3.1 Dynamic equations

The dynamic macroscopic variables for ferronematic gels
and elastomers on the one hand and for cholesteric gels
and elastomers in their local description on the other hand
are the same. Consequently the balance equations for con-
served quantities, broken symmetry variables and slowly
relaxing variables have the same overall structure [59].
Therefore the discussion in the present subsection closely
parallels that of section 3.1 in ref. [59]. For low molecu-
lar weight ferrocholesterics the dynamic equations for the
stress tensor, εij , and for the relative rotations, Ω̃i, are ab-
sent. In addition there is also no dynamic equation for the
magnetization in the case of usual low molecular weight
cholesteric liquid crystals. Therefore we have

∂

∂t
ρ+ div ρv = 0 (18)

∂

∂t
σ + divσv + divjσ =

R

T
(19)

∂

∂t
gi +∇j

(
vjgi + δijp− ψij + σthij + σij

)
= 0 (20)( ∂

∂t
+ vj∇j

)
ni + (n× ω)i + Yi = 0 (21)

ρ
( ∂
∂t

+ vj∇j
)
c+ div jc = 0 (22)( ∂

∂t
+ vj∇j

)
S + Z = 0 (23)( ∂

∂t
+ vj∇j

)
Ω̃i + Y Ωi = 0 (24)( ∂

∂t
+ vj∇j

)
εij −Aij +Xε

ij = 0 (25)( ∂
∂t

+ vj∇j
)
Mi + (M × ω)i +Xi = 0 (26)

with gi = ρvi. Using the requirement of the rotational
invariance of the energy one can write [15,58,81]

2σthij = −(DjEi +DiEj)− (BjHi +BiHj)
+ Φki∇jnk + Φkj∇ink +∇k(njΦik − niΦjk)
+ 2(ψjkεki + ψikεkj) (27)

where σthij is either symmetric or a divergence of an an-
tisymmetric part, which ensures angular momentum con-
servation. It can be brought into a manifestly symmetric
form by some redefinitions [76].

The source term R/T in (19) is the entropy produc-
tion, which has to be zero for reversible, and positive for
irreversible processes. The phenomenological parts of the
entropy current jσi , the stress tensor σij , the concentra-
tion current jci and the quasi-currents Yi, Y

Ω
i , Z, Xi, and

Xε
ij , associated with the temporal changes of the director,

relative rotations, the nematic order, the magnetization,
and the strain tensor, respectively, have been presented in
detail for ferronematic gels and elastomers in ref. [59]. We
will introduce them only, when needed below.

The additions brought about by the existence of the
pseudoscalar quantity q0 to the phenomenological currents
and quasi-currents can (also) be split into reversible (su-
perscript R) and dissipative parts (superscript D), where
the former have the same time reversal behavior as the
time derivative of the appropriate variable and must give
R = 0, while the latter have the opposite behavior and
give R > 0. The phenomenological part of the stress
tensor σij has to be symmetric guaranteeing angular mo-
mentum conservation. The dynamic equation for the en-
ergy density follows from eqs.(18-26) via eq.(1), and is not
shown here.

For the reversible and irreversible currents we will fo-
cus on the lowest order in the gradients. In addition, we
will present reversible and dissipative dynamic contribu-
tions, which are linear in an external magnetic field, H,
in a separate appendix.
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We can use the static Maxwell equations

curlH = curl (B −M) = 0, divB = 0, (28)

to determine B, since we are not dealing with electromag-
netic effects. For the electrostatic Maxwell fields we take
curlE = 0 and divD = ρe. Conservation of the electric
charge ρE is expressed by (∂/∂t)Di+vk∇kDi+(D × ω)i+
jei = 0 with jei the electric current density.

3.2 Reversible dynamics

Using the condition R = 0 and the general symmetry ar-
guments outlined above, we obtain the following expres-
sions for the chiral parts of the reversible currents up to
linear order in the thermodynamic forces without a mag-
netic field Hi

jσRi = q0(χσijkAjk − φσijhMj ) (29)

jcRi = q0(χcijkAjk − φcijhMj ) (30)

XεR
ij = 0 (31)

jeRi = q0(χeijkAjk − φeijhMj ) (32)

σRij = −q0(χckij∇kµc + χekijEk + χσkij∇kT ) (33)

ZR = 0 (34)

Y Ri = 0 (35)

Y ΩRi = 0 (36)

XR
i = q0(φσij∇jT + φcij∇jµc + φeijEj) (37)

where we have disregarded gradients of the thermody-
namic forces.

The material tensors χξijk and φξij describe purely chi-
ral effects and contain one or two phenomenological pa-
rameters each (where ξ ∈ σ, c, e)

χξijk = χξ(εikmnjnm + εijmnknm) (38)

φξij = φξ1δ
⊥
ij + φξ2ninj (39)

totaling 9 purely chiral reversible transport parameters.

The contributions associated with χξijk couple re-
versibly extensional flows to heat, concentration and elec-

tric currents. The symmetric second rank tensors φξij are
associated with the reversible coupling of the molecular
field of the magnetization, hMi , with the variables entropy
density, concentration and electric field. All these contri-
butions are absent in ferronematics and ferronematic gels
and elastomers due to the lack of broken parity symmetry
in the latter classes of materials.

3.3 Irreversible dynamics and entropy production

For ferronematic gels and elastomers we have treated the
strain tensor as a conserved quantity [59]. In the present
paper we incorporate not only the permanently cross-
linked part of the gel, but also the effects of transient

elasticity. Therefore the part of the dissipation function
associated with ψij , the thermodynamic conjugate of the
strain tensor, has two diagonal contributions, which take
the form

Rψ =
1

2
γij (∇kψik) (∇lψjl) +

1

2
(τ−1)ijklψijψkl (40)

where (τ−1)ijkl has the same structure as the elastic tensor
cijkl and thus five independent coefficients in a uniaxial
system.

The first term is identical to the one already given in
ref. [59], while the second term, which contains no gradi-
ents, describes the relaxation in the spirit of a macroscopic
variable on a long, but finite time scale in the long wave-
length limit [58,81].

The other parts of the dissipation function already
present for ferronematic gels and elastomers [59] as well as
for ferronematic LMWs [41] have already been discussed
in detail in the literature. We will not reproduce them
here and only introduce some of them, when needed in
the discussions in Sec. 4.

Here we focus on the dissipative part of the ferro-
cholesteric dynamics associated with the presence of the
pseudoscalar q0, which can be discussed most succinctly
in terms of the dissipation function R [58, 76]. It is con-
structed in terms of the thermodynamic forces, which are
either the conjugate quantities or their gradients,

RL = q0 εijknjh
n
k (ψc∇iµc + ψσ∇iT + ψeEi)

+ q0εijknjL
⊥
k (ψΩc ∇iµc + ψΩσ ∇iT + ψΩe Ei)

+ q0ψjk(χcψijk∇iµc + χσψijk∇iT + χeψijkEi) (41)

It contains all the dissipative Lehmann-type effects relat-
ing gradients of temperature and concentration, and elec-
tric fields to director rotations (first line) and relative ro-
tations (second line). In contrast to the static case, where
there is no coupling to an electric field [78], such a contri-
bution arises naturally in the dissipation function. On the
other hand, there is no such dissipative coupling to density
gradients, since there is no dissipative current associated
with density (due to mass conservation). The third line
describes appropriate dissipative couplings to elastic de-
formations, not considered before. The material tensors

χξψijk with ξ ∈ {σ, c, e} contain one dissipative transport

parameter each and are of the form of eq.(38).

We stress that these dissipative contributions occur for
all gels and elastomers with macroscopic chirality includ-
ing cholesteric and chiral smectic gels and elastomers.



6 H.R. Brand, A. Fink, and H. Pleiner: Macroscopic behavior of ferrocholesterics

The chiral parts of the dissipative currents then read

jσDi = −q0(εijknk[ψσh
n
j + ψΩσ L

⊥
j ] + χσψijkψjk (42)

jcDi = −q0(εijknk[ψch
n
j + ψΩc L

⊥
j ] + χcψijkψjk (43)

jeDi = −q0(εijknk[ψeh
n
j + ψΩe L

⊥
j ] + χeψijkψjk (44)

σDij = 0 (45)

Y Di = q0εkjinj(ψc∇kµc + ψσ∇kT + ψeEk) (46)

Y ΩDi = q0εkjinj(ψ
Ω
c ∇kµc + ψΩσ ∇kT + ψΩe Ek) (47)

XD
i = 0 (48)

XεD
ij = q0(χcψkji∇kµc + χσψkji∇kT + χeψkjiEK) (49)

totaling 9 purely chiral dissipative transport parameters,
the same number as reversible ones.

As in the reversible case we have refrained from dis-
cussing effects involving gradients of the thermodynamic
forces. However, if we take into account, e.g. ∇iW , then
ZD acquires chiral contributions ∼ ∇ihnk , ∼ ∇jL⊥k , or
∼ ∇jψjk leading to counter terms of the form ∼ ∇kW .

4 Experimental considerations

4.1 Some consequences of cross-coupling terms

The purpose of this section is to present experimentally
testable predictions as a consequence of cross-couplings
that are possible for ferrocholesteric LMWs and ferroc-
holesteric gels and elastomers. These contributions arise
as a response to external fields such as flow fields or ex-
ternal magnetic and electric fields. Such crosscouplings
can arise in the energy density and in the reversible and
irreversible parts of the currents, giving rise to static and
(reversible and irreversible) dynamic effects, respectively.

All the phenomenological reversible transport coeffi-
cients presented in the last section in reversible currents
can assume a large range of values and different signs.
(In contrast to those that have fixed values due to invari-
ance and general symmetry constraints, such as advec-
tive and convective terms, which are made explicit in eqs.
(18)–(27)). On the other hand, phenomenological cross-
coupling coefficients in the energy density and in dissipa-
tive currents are bound by the requirements of positivity
of energy and dissipation, respectively. Since we discuss
in the following four isolated chiral cross-coupling effects,
one has to make sure that additional (maybe achiral) ef-
fects do not disturb the picture given. For that reason we
assume e.g. a negative dielectric anisotropy for the cases
were we assume an electric field perpendicular to the ne-
matic director.

4.2 Local piezoelectricity in ferrocholesterics

We start our analysis by inspecting the piezoelectric
contribution to the generalized energy, eq.(4) of fer-
rocholesteric gels and elastomers (applies also to non-
magnetic, ordinary cholesteric gels and elastomers)

εp = q0ζ
ψ(εijpnpnk + εikpnpnj)Diεjk (50)

To be definite we consider the case of an electric field
applied parallel to the helical axis, which we take to be
oriented parallel the ẑ-axis: Ei = Eδiz. Then the direc-
tor field, ni, of the undeformed cholesteric helix takes the
form ni = (cos ϕ̃, sin ϕ̃, 0) with ϕ̃ = ϕ(z) − ϕ0 containing
an arbitrary initial phase ϕ0, and the director field thus
rotates in the x−y-plane perpendicular to the helical axis.
Inserting these ingredients into eq.(50) we obtain for the
piezoelectric contribution to the generalized energy

εp = q0Dzζ
ψ[(εxx − εyy) sin(2ϕ̃)− 2εxy cos(2ϕ̃)] (51)

For an external electric field, eq.(51) is minimized by
period elastic deformations along the z-axis giving rise to
a finite normal elastic stress difference and to elastic shear
stresses, phase-shifted with respect to each other. If av-
eraged over a large number of pitch lengths (global limit)
the effect (almost) vanishes indicating that the deforma-
tions do not scale with the sample thickness. This has to
be expected, since in global limit the director helix is also
averaged out and cholesterics are of D∞ symmetry that
forbids piezoelectricity. For sample thicknesses that are
smaller than the pitch, however, eq.(51) presents the in-
triguing prediction of sinusoidal variations of piezoelectric
strain deformations.

4.3 An electric field induces a magnetization and a
magnetic field gives a reversible electric current

To check the experimentally accessible consequences of
some of the reversible dynamic contributions, we start
with cross-coupling terms associated with the magneti-
zation current and the electric current, eq.(32) and (37),

XR
i = q0φ

e
ijEj and jeRi = −q0φeijhMj (52)

with φeij = φe1δ
⊥
ij + φe2ninj , where hMi is the thermody-

namic conjugate of the magnetization, Mi.
Assuming again an electric field along the helical axis

ẑ, there is a constant reversible magnetization current
XR
z = q0φ

e
1Ez. For a sensible interpretation of this result,

we have to add the (achiral) relaxation of the magnetiza-
tion [59] resulting in the dynamic equation

Ṁz + q0φ
e
1Ez + (1/τM⊥ )Mz = 0 (53)

with τM⊥ the transverse magnetization relaxation time.
Thus, in the stationary limit, a finite magnetization

Mz = −q0τM⊥ φe1Ez (54)

is induced by the external electric field. As a secondary
effect the latter also leads to a reversible electric current
jeRz = (q0φ

e
1)2τM⊥ (χ⊥/µ⊥)Ez with the transverse mag-

netic susceptibility χ⊥ and µ⊥ = 1 + χ⊥.
A kind of converse effect also exists. Considering

an external magnetic field along the helical axis we get
hMz = −Bz neglecting the induced magnetization, there is
a finite, constant, and reversible electric current

jeRz = q0φ
e
1Bz . (55)
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Such a connection between a vector (electric current) and
an axial vector (magnetic field) is only possible in a system
with broken parity (here due to pseudoscalar q0): Under a
spatial inversion (e.g. for z → −z) q0 → −q0 (while Bz is
unchanged), and as a result, jeRz → −jeRz , characteristic
for a vector. Changing, on the other hand, the direction of
time, Bz → −Bz, and as a result, jeRz → −jeRz , indicating
that this current is reversible.

These ferroic-like effects, eqs. (54) and (55), do not
require an elastic degree of freedom and are therefore
present, not only in cholesteric magnetic elastomers and
gels, but also in ferrocholesterics. Neither (non-magnetic)
nematic elastomers and gels, nor ordinary cholesterics or
cholesteric elastomers and gels can exhibit such a macro-
scopic behavior.

We close this subsection by pointing out that analo-
gous effects are predicted to arise, when the electric field
is replaced by temperature or concentration gradients, in-
volving heat or concentration currents (instead of the elec-
tric current) – only the reversible transport parameters are
different (φσ1 or φc1 replacing φe1).

4.4 Flow generates reversible currents

Next we discuss reversible dynamic cross-couplings be-
tween flow on the one hand and electric fields and tem-
perature or concentration gradients on the other. We will
formulate the effects in terms of the temperature gradient
and the heat current, only. The other effects are obtained
using the concentration gradient or an electric field (in-
stead of the temperature gradient) and the concentration
and electric current (instead of the heat current), as well
as taking the transport parameters with superscript c or
e (instead of σ), respectively.

From eqs. (33) and (29) we get

jσRi = q0χ
σ
ijkAjk and σRij = −q0χσkij∇kT (56)

with the material tensor

χσijk = χσ(εikpnjnp + εijpnknp) (57)

Assuming a simple shear flow Ajk = Sδjxδky in the
plane perpendicular to the helical axis, ẑ, there is a re-
versible heat current along the helical axis

jσRz = −Sq0χσ cos(2ϕ̃) , (58)

It is periodic and changes sign twice going along one pitch
length resulting in local accumulation or depletion of heat.
If averaged over a large number of pitch lengths the effect
(almost) vanishes and for an experimental realization ma-
terial with a large pitch is necessary. For a realistic com-
parison with appropriate experiments one has to take into
account other, competing effects, e.g. the flow alignment
(distorting the helical structure) and the coupling of flow
with temporal changes of the strain field (requiring the
use of oscillatory shear flow).

The converse effect is obtained by applying a temper-
ature gradient along the helical axis resulting in stresses
in the perpendicular plane

σRxx = −σRyy = −q0∇zTχσ sin(2ϕ̃) (59)

σRyx = σRxy = +q0∇zTχσ cos(2ϕ̃) (60)

that, again, are modulated sinusoidally and vanish in the
global limit. Locally, the transverse shear stresses and the
in-plane normal stress difference are phase shifted with
respect to one another.

We note that the effects described above do not rely
on the magnetic or the elastic degree of freedom and also
occur in ordinary cholesterics and cholesteric gels, and in
ferrocholesterics as well.

4.5 Dissipative effects of an applied magnetic field

As an example of dissipative effects that only exist in the
presence of a magnetic field, we discuss the coupling be-
tween the electric (or thermal or solutal) degree of freedom
with flow. From (A.17) and (A.18) we have

jeDi = −q0Hjζ
eA
ijklAkl and σDij = −q0Hlζ

eA
klijEk (61)

where the structure of the fourth rank tensors is given
in eq.(A.13) involving in general nine independent coef-
ficients. Similar equations are valid for the temperature
and concentration current, eqs. (A.15) and (A.16).

Here we discuss the second effect for the simple case of
an external magnetic field Hi along the helical axis, ẑ. In
addition, we assume that the electric field (or the temper-
ature and concentration gradient) are applied along the
same direction. Then we find for the stress tensor the
non-vanishing components

σDxx + σDyy = −q0(ζξA1 + ζξA4 + 2ζξA8 + 2ζξA9 )HzEz (62)

σDzz = −q0(ζξA1 + 2ζξA2 )HzEz (63)

σDxy = −q0
(1

2

[
ζξA4 − ζ

ξA
1

]
+ ζξA9 − ζ

ξA
8

)
sin(2ϕ̃)HzEz

(64)
The shear stresses are modulated sinusoidally along the
helical axis and vanish in the global limit. However, both,
the in-plane and the longitudinal compressional stresses,
are constant. Note, the overall compression or dilational
stress, σxx + σyy + σzz is non-zero.

5 Summary and conclusions

Here we have derived the macroscopic dynamics for
low molecular weight ferrocholesteric liquid crystals as
well as for ferrocholesteric gels and elastomers. It turns
out that several of the cross-coupling terms presented
have also not been derived before for the usual case of
low molecular weight cholesteric liquid crystals, since
the symmetry based derivation of macroscopic dynamic
equations for cholesterics in their local description is
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also a new special case. We have analyzed in detail the
influence of chirality via the pseudoscalar quantity q0, in
particular via the new dynamic variable characteristic for
ferrocholesterics, the magnetization density, as well as
the additional macroscopic variables characteristic of gels
and elastomers, the strain field and relative rotations.
Particular emphasis is laid on dynamic cross-coupling
terms including contributions linear in a magnetic field.
For several of the novel terms the physical consequences
have been discussed. For example, we show that in a
ferrocholesteric liquid crystalline material a contribution
to the electric and the heat current arises, which is
sensitive to the chirality in the presence of a magnetic
field. Another quite remarkable effect is the prediction
of electric and heat currents due to relative rotations in
ferrocholesteric gels and elastomers.

Acknowledgments: Partial support of this work
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Forschungsgemeinschaft is gratefully acknowledged.

Appendix A: Dynamic contributions for ferro-
cholesterics and ferrocholesteric gels and elas-
tomers linear in the magnetic field

A.1 Reversible dynamics linear in a magnetic field

Using the condition R = 0 and general symmetry argu-
ments, we obtain the following expressions for the chiral
parts of the reversible currents in linear order in a mag-
netic field Hi

jσRi = q0(+µσjikHkh
n
j + µσΩjikHkL

⊥
j

+cσijklHjψkl + φσWij HjW ) (A.1)

jcRi = q0(+µcjikHkh
n
j + µcΩjikHkL

⊥
j

+ccijklHjψkl + φcWij HjW ) (A.2)

XεR
ij = q0Hl(c

σ
klij∇kT + ccklij∇kµc + ceklijEk) (A.3)

jeRi = q0(+µejikHkh
n
j + µeΩjikHkL

⊥
j

+ceijklHjψkl + φeWij HjW ) (A.4)

σRij = 0 (A.5)

ZR = q0Hi(φ
σW
ij ∇jT + φcWij ∇jµc + φeWij Ej) (A.6)

Y Ri = q0Hk(µσijk∇jT + µeijkEj + µcijk∇jµc) (A.7)

Y ΩRi = q0Hk(µσΩijk∇jT + µeΩijkEj + µcΩijk∇jµc) (A.8)

XR
i = 0 (A.9)

where we have disregarded gradients of the thermody-
namic forces.

The material tensors describing chiral effects in a mag-

netic field, φξWij , µξijk, µξΩijk, and cξijkl where ξ ∈ {σ, c, e},

take the form with each containing two phenomenological
parameters

φξWij = φξW1 δ⊥ij + φξW2 ninj (A.10)

µξijk = µξ1njδ
⊥
ik + µξ2nkδ

⊥
ij (A.11)

µξΩijk = µξΩ1 njδ
⊥
ik + µξΩ2 nkδ

⊥
ij (A.12)

or nine

cξijkl = cξ1δ
⊥
ijδ
⊥
kl + cξ2(δ⊥ikδ

⊥
jl + δ⊥il δ

⊥
jk) + cξ3ninjδ

⊥
kl

+cξ4nknlδ
⊥
ij + cξ5(ninkδ

⊥
jl + ninlδ

⊥
jk)

+cξ6(njnkδ
⊥
il + njnlδ

⊥
ik) + cξ7ninjnknl

+cξ8npnq(εikpεjlq + εilpεjkq)

+cξ9δ
⊥
pq(εikpεjlq + εilpεjkq) (A.13)

totaling 45 chiral-magnetic reversible transport parame-
ters.

Therefore, in reversible dynamics, temperature gra-
dients, concentration gradients and electric fields trigger

temporal changes of the strains (cξijkl), of the degree of ne-

matic order (φξWij ), of the relative rotations (µξΩijk), as well

as director rotations (µξijk). Vice versa, there are counter
effects that guarantee zero entropy production, in par-
ticular there are temperature, concentration and electric

currents induced by elastic stresses (cξijkl), by ’molecular’

fields of the nematic order (φξWij ), relative rotations (µξΩijk),

and the director (µξijk).

A.2 Irreversible dynamics and entropy production linear
in a magnetic field

In the presence of an external magnetic field there are ad-
ditional dissipative coupling terms characteristic for fer-
rocholesterics and ferrocholesteric gels and elastomers,
which are linear in Hi

RH = q0AklHj(ζ
cA
ijkl∇iµc + ζσAijkl∇iT + ζeAijklEi)

+ q0h
M
k Hj(χ

cM
ijk∇iµc + χσMijk ∇iT + χEMijk Ei)

(A.14)

relating gradients of temperature and concentration, and
electric fields to flow (first line) and to rotations of the
magnetization (second line). They require the simultane-
ous presence of macroscopic chirality and a magnetic field
and have apparently not been considered before. Appro-
priate couplings to the nematic order parameter (involving
W ) are not possible due to the lack of any rank-1 tensor
that is even under the ni to −ni invariance. The property

tensors χξMijk and ζξAijkl, with ξ ∈ {σ, c, e}, take the form of

eqs. (7) and (A.13), respectively.
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The chiral parts of the dissipative currents then read

jσDi = −q0Hj [ζ
σA
ijklAkl + χσMijk h

M
k ] (A.15)

jcDi = −q0Hj [ζ
cA
ijklAkl + χcMijkh

M
k ] (A.16)

jeDi = −q0Hj [ζ
eA
ijklAkl + χeMijk h

M
k ] (A.17)

σDij = −q0Hl(ζ
cA
klij∇kµc + ζσAklij∇kT + ζeAklijEk)

(A.18)

Y Di = 0 (A.19)

Y ΩDi = 0 (A.20)

XD
i = q0Hj(χ

cM
kji∇kµc + χσMkji ∇kT + χeMkjiEK)

(A.21)

XεD
ij = 0 (A.22)

totaling 39 chiral-magnetic dissipative transport parame-
ters.

As in the reversible case we have refrained from dis-
cussing effects involving gradients of the thermodynamic
forces. However, if we take into account, e.g. ∇iW , then
ZD acquires chiral magnetic contributions ∼ ∇kAij and
∼ ∇khMi , leading to counter terms the form ∼ ∇kW .

Appendix B: Dynamic contributions for achiral
ferronematics and ferronematic gels and elas-
tomers linear in the magnetic field

Here we summarize dissipative and reversible dynamic
contributions for ferronematics and ferromagnetic gels and
elastomers which are linear in a magnetic field and which
arise already without chirality. The dissipative contribu-
tions as they are conveniently incorporated into the dissi-
pation function take the form

RachH = AijHk(λDnijklh
n
l + λDΩijklL

⊥
l )

+ HiAjk(λDWijk W + λDψijklmψlm)

+ Hih
M
j (ψDnijk h

n
k + ψDΩijk L

⊥
k + ψDWij W + ψDψijklψkl)

(B.1)

where the second rank material tensor is of the standard
uniaxial form, eq. (39), the rank-3 tensor λDWijk is symmet-

ric in j and k and as in eq. (38), while ψDαijk for α ∈ {n,Ω}
is transverse in the last index and odd in the number of
n’s and given by

ψDαijk = ψDα1 niδ
⊥
jk + ψDα2 njδ

⊥
ik (B.2)

The rank-4 tensor ψDψijkl is symmetric in two indices and is

given by eq.(A.13), while for λDαijkl we have

λDαijkl = λDα1 ninjnpεklp + λDα2 δ⊥ijεklpnp

+λDα3 (ninknpεjlp + njnknpεilp)

+λDα4 (δ⊥ilnpεjkp + δ⊥jlnpεikp)

+λDα5 (δ⊥iknpεjlp + δ⊥jknpεilp) (B.3)

We refrain from writing down the rather cumbersome

structure of the fifth rank tensor λDψijklm in detail here.
We note that, except for the coupling between exten-

sional flow and the nematic molecular field, λDnijkl, which

has been given in ref. [41], all other coupling terms are pre-
sented here for the first time. The third line of eq.(B.1)
shows in particular that the molecular field, hMi , associ-
ated with the magnetization, can couple dissipatively to
the molecular field of the director as well as to relative
rotations (via L⊥i ).

If we make use of the symmetry arguments outlined in
the main part of this paper and use the condition R = 0
we obtain the following phenomenological expressions for
the reversible currents up to linear order in the thermo-
dynamic forces and linear in the magnetic field, Hi

jσRi = ψσσijkHj∇kT + ψσcijkHj∇kµc + ψσEijkHjEk (B.4)

jcRi = −ψσckjiHj∇kT + ψccijkHj∇kµc + ψcEijkHjEk (B.5)

XεR
ij = τψψijklmHmψkl + ψψWijk HkW

+ψψnijklHkh
n
l + ψψΩijklHkL

⊥
l (B.6)

jERi = −ψσEkjiHj∇kT − ψcEkjiHj∇kµc + ψEEijk HjEk (B.7)

σRij = −νRijklmHmAkl − ψAMijklHkh
M
l (B.8)

ZR = −ψψWijk Hkψij + χW δ
⊥
ijHjh

n
i + χΩδ

⊥
ijHjL

⊥
i (B.9)

Y Ri = (γ−1)Rijkh
n
jHk + Θ̃ijkL

⊥
j Hk

−χW δ⊥ijHjW + ψψnkljiHjψkl (B.10)

Y ΩRi = ΘijkL
⊥
j Hk − Θ̃jikhnjHk

−χΩδ⊥ijHjW + ψψΩkljiHjψkl (B.11)

XR
i = ψMM

ijk Hjh
M
k + ψAMkljiHjAkl (B.12)

where the counter-terms guarantee vanishing entropy pro-
duction. For the self-coupling terms that do not have
counter-terms, the contribution to R has to vanish iden-
tically. We have for (γ−1)ijk, Θ̃ijk and Θijk

θijk = θ1(εijk + npniεpkj − npnjεpki)
+ θ2εpijnpnk (B.13)

For the third rank tensors ψαβijk with {α, β} ∈
{σ, c, E,M} we find the same form as eq. (7) for α 6= β

ψαβijk = ψαβ1 εijk + ψαβ2 εijpnpnk

+ ψαβ3 εipknpnj + ψαβ4 εpjknpni (B.14)

while for α = β the additional condition ψαα2 = ψαα4 ,
leading to ψααijk = −ψααkji, is required to give R = 0.

The tensor ψψWijk is symmetric in i and j and of the
form

ψψWijk = ψψW (εkjpnpni + εkipnpnj) (B.15)

The fourth order tensors are symmetric in the first pair
of indices and either even in n, as is ψAMijkl or odd in n and
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transverse in l, as are ψψnijkl and ψψΩijkl. The former is given

by Eq. (A.13), and the latter by (B.3), containing nine
and five coefficients, respectively.

The expression for νRijklmHm as well as its symmetry

properties have been studied in detail in ref. [41]. The

corresponding analysis applies equally well to τψψijklmHm.
For ferronematics the coupling terms between heat and

concentration currents on the one hand and temperature
and chemical potential gradients on the other have been
given in ref. [41]. This also applies to the coupling terms
between extensional flow and the stress tensor and be-
tween the director quasi-current and the molecular field
of the director. All contribution involving relative rota-
tions, the magnetization, the order parameter modulus
and the electric field and their respective thermodynamic
forces and (quasi-)currents are presented here in eqs.(B.4)
- (B.12) for the first time.

Appendix C: Selected aspects of the rheolo-
gical behavior of ferrocholesterics and ferro-
cholesteric gels and elastomers

In the case of ferronematic materials (low molecular
weight as well as gels and elastomers) one has been able
to find explicitly and quite generally a stationary solu-
tion under simple shear (Sec. 4.2 of ref. [59]). This is
no longer possible for the case of ferrocholesteric materi-
als due to the intricate coupling between all macroscopic
variables. We expect, however, that future measurements
of the rheological properties of ferrocholesteric materials
can serve as a guide for making suitable simplifying as-
sumptions to the general problem so that explicit expres-
sions for the complex dynamic shear modulus, G∗(k, ω) =
G′(k, ω) + iG′′(k, ω), as well as for the complex dynamic
Young modulus, E∗(k, ω) = E′(k, ω) + iE′′(k, ω), can be
extracted from the general macroscopic basic equations.

In this Appendix we discuss how the broken mirror
symmetry modifies the elastic mechanical stress, ψij , the
stress tensor, σij , and Xε

ij that describes the dynamic
changes of the strain tensor – the quantities that come
into play naturally during measurements of G∗ and E∗.
These chiral effects are proportional to q0 and their ex-
perimental relevance increases with q0. For samples of
thickness L with Lq0 � 1, there are, however, very many
pitch lengths present. Those chiral effects that are peri-
odic with the helix are averaged out in that case. Only for
very thin samples with Lq0 ∼ 1, they survive, but are dif-
ficult to detect, since the situation is almost nematic-like.
Therefore, most important experimentally are those chiral
effects that do not vanish, when averaged over many pitch
lengths.

The chiral contributions to the static stress ψij ,
eq.(13), only arise for chiral gels and elastomers. In sec.
4.2 we have discussed in detail the piezoelectric (second)
contribution in eq.(13), and found that it vanishes when
averaged over many pitch lengths (in thick samples). In
contrast, the first term, describing the influence of changes
in the helical pitch, can be expected to contribute for all

sample thicknesses to elongational flows and deformations,
since

ψxx + ψyy = q0(τε1 + τε2 )∇z(δφ̃) (C.1)

ψzz = q0τ
ε
2∇z(δφ̃) (C.2)

while the shear components either vanish identically or
when averaged over many pitch lengths

ψxy = q0(τε1 − τε2 ) sin(2ϕ̃)∇z(δφ̃) (C.3)

ψxz = ψyz = 0 (C.4)

For the case without an external magnetic field there
are only reversible contributions to the stress tensor σRij ,
given by eq.(33). As discussed in Sec. 4.4 all contribu-
tions, either due to a temperature, a chemical potential
gradient, or an electric field, applied along the helical axis,
are periodic and vanish when averaged over many pitch
lengths.

Dissipative contributions to the stress tensor, σDij , are
possible in the presence of a magnetic field, eq. (A.18).
As discussed in section 4.5 only the diagonal elements of
the stress tensor survive the averaging process, cf. eqs.
(62) and (63).

The dynamic contributions to Xε
ij behave rather op-

posite: The dissipative contributions (without a field),
eq.(48), all vanish when averaged, while the reversible one,
(in the presence of a magnetic field), eq.(A.3), have the
same structure as eqs.(C.1)-(C.4) and only the diagonal
elements are non-zero when averaged

Xε
xx +Xε

yy = q0(cσ1 + cσ4 + 2cσ8 + 2cσ9 )∇zT (C.5)

Xε
zz = q0(cσ1 + 2cσ2 )∇zT (C.6)

here written down for the case of a temperature gradient.
These results, together with the appropriate counter

terms, give us some hints about the role of the chiral con-
tributions to G∗ and E∗. First, shear excitations are only
weakly influenced, since the chiral contributions vanish
when averaged over many pitch lengths. On the other
hand, sound-like excitations do get (robust) chiral con-
tributions, both in the real and the imaginary part of
E∗. The static contributions, eq.(C.1) and (C.2), show
that changing the effective pitch, e.g. by rotating one of
the horizontal boundary plates (assuming strong nematic
anchoring), leads to residual elastic stresses that change
effectively the elastic modulus and therefore E′(k, ω).
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