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I. INTRODUCTION

Ferrogels belong to a new class of magnetocontrolled
elastic materials, which are chemically cross-linked poly-
mer networks swollen with a ferrofluid. Coupling the
elastic medium with the magnetic properties of the par-
ticles allows us to manipulate the elastic behavior of fer-
rogels by external magnetic fields and/or field gradients.
This feature offers opportunities for various applications
as, e.g., soft actuators, micromanipulators, and artificial
muscles [1]. Heating of these materials in alternating
magnetic fields is a promising approach in cancer ther-
apy [2]. Since the magnetic rubber is soft, inexpensive,
and controlled in its properties by the magnetic field, it
can also be used in an apparatus for immunoblotting [3].

The properties of ferrogels depend on the preparation
conditions (solvent, concentration of cross linking, con-
centration of magnetic particles). Preparing ferrogels in
an external magnetic field one can obtain large columns
of magnetic particles, the length of which is much larger
than the mesh size of the network. In this case the clus-
ters are fixed in the network [4]. As a result the ferrogel
is strongly anisotropic [5].

Here we consider isotropic ferrogels. The typical size
of the magnetic particles is ∼ 10 nm. The bare parti-
cles tend to coagulate. To prevent this, magnetic grains
are charged [6] or coated by polymers [7]. The magnetic
gels are usually only weakly cross linked, so that the size
of the magnetic particles is much smaller than the mesh
size of the network. However, still some coagulation takes
place resulting in magnetic clusters comparable in size to
that of the mesh [8]. Without external field no remnant
magnetization is found. An external field easily magne-
tizes the sample (superparamagnetism). Outside equilib-
rium the magnetization relaxes to its equilibrium value
and orientation set by the external field. This relaxation
is rather slow compared to the (many) microscopic relax-
ation processes and it is therefore reasonable to keep the
magnetizations as a macroscopic, slowly relaxing vari-
able.

In inhomogeneous magnetic fields an abrupt shape
transition of isotropic ferrogels was observed [8]. The
force generated by such a magnetic gradient field drives
the magnetic grains in the direction of the gradient, thus
deforming the network, if there is a coupling between the
magnetic particles and the network. In these experiments
this seems to be the case. Therefore, we assume in our
model that the magnetic particles are “attached” to the
network, although the precise meaning of this statement
is unclear on the molecular level. On the macroscopic
level this leads to a coupling of rotations of the magne-
tization as well as changes of its absolute value with the
elastic strains or stresses. In particular, we will discuss
static elongation, shear deformations, and the modified
sound spectrum in a homogeneous magnetic field by solv-
ing the appropriate generalized hydrodynamic equations.

To derive the macroscopic dynamic equations we use
the hydrodynamic method. Hydrodynamics describes a
system in the long wavelength limit and for long time
scales. The hydrodynamic equations are derived by
means of symmetry and thermodynamic arguments. The
main advantage of the hydrodynamic method lies in its
generality, which allows its application to very different
systems. However, the occurrence of phenomenological
parameters in the static and dynamic expansions are the
price one has to pay for this generality. Therefore co-
efficients turning up in the equations below have to be
determined by microscopic models or by experiments.

There are cases, where nonhydrodynamic, relaxing
processes become so slow that their dynamics takes place
on a macroscopic time scale as well. Then it is appropri-
ate to also include nonhydrodynamic, but slowly relaxing
variables in the dynamic description of such a system. In
ferrofluids the magnetization (its orientation as well as
its absolute value) relaxes to the equilibrium value set
by the external field. The appropriate relaxation time is
much larger than all microscopic time scales and can be
relevant for the macroscopic dynamics [9, 10]. In this case
one should treat the magnetization as an additional dy-
namic variable with its own dynamical (relaxation) equa-
tion.
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Here we generalize the set of hydrodynamic equations
for ordinary gels to those for ferrogels by including the
magnetization as an additional, slowly relaxing variable.
Special emphasis is laid on the magnetomechanical cross
couplings between elasticity and the magnetic degree of
freedom. As an application for these equations we dis-
cuss the spectrum of longitudinal and transverse sound
in the presence of an external magnetic field. In the low
frequency limit a comparison with static elastic measure-
ments is made. A possible way of exciting shear waves
by oscillating temperature gradients in the presence of a
gradient field is outlined.

II. STATICS AND THERMODYNAMICS

The macroscopic description of a system starts with
the identification of the relevant variables. Apart from
the quantities that are related to local conservation laws,
such as mass density ρ, momentum density g, energy den-
sity ε, and concentration c of the swelling fluid (and/or
that of the magnetic particles), we consider the elastic
strain uij and the magnetization M as additional vari-
ables. In a crystal the former is related to the broken
translational symmetry due the long range positional or-
der, which gives rise to the displacement vector ~u as a
hydrodynamic symmetry variable. Since neither solid
body translations nor rigid rotations give rise to elas-
tic deformations, the strain tensor is used as a variable,
which reads in linearized version uij = 1

2 (∇iuj +∇jui).
In amorphous solids, such as rubbers, gels, etc., linear
elasticity is still described by a second-rank, symmet-
ric strain tensor. For a proper description of nonlinear
elasticity cf. [11]. For the purpose of this work, how-
ever, linear elasticity is sufficient. As discussed in the
Introduction, the magnetization M is a slowly relaxing
variable in the superparamagnetic case.

Assuming local thermodynamic equilibrium, i.e. all
microscopic, fast relaxing quantities are already in equi-
librium, we have the Gibbs relation

dε = Tdσ + µdρ + µcdc + vidgi + HidBi

+hM
i dMi + Ψijduij , (1)

relating all macroscopically relevant variables discussed
above to the entropy density σ. B is the magnetic in-
duction field included here in order to accommodate the
static Maxwell equations. In eq.(1) the thermodynamic
quantities, chemical potential µ, temperature T , relative
chemical potential µc, velocity vi, elastic stress Ψij , mag-
netic field Hi, and the magnetic molecular field hM

i , are
defined as partial derivatives of the energy density with
the respect to the appropriate variables [12].

To determine these thermodynamic forces and thus the
static properties of magnetic elastomers one provides an

expression of the energy density in terms of the variables

ε = ε0 +
B2

2
−B · M +

µijkl

2
uijukl

−γijkl

2
MiMjukl +

α

2
M2

i +
β

4
(
M2

i

)2
+uii (χρδρ + χσδσ + χcδc) , (2)

where ε0 is the energy density of a fluid binary mix-
ture. Eq. (2) explicitly contains the elastic and the
magnetic energy, their cross coupling (the magnetoelas-
tic energy) and bilinear couplings of compression with
the scalar variables. To discuss large elastic deforma-
tions (rubber elasticity) one should keep terms of higher
order of uij , which are neglected here. The magnetoe-
lastic coupling is cubic [13] and the M4 contribution is
kept in order to guarantee the thermodynamic stabil-
ity. The tensors µijkl and γijkl take the isotropic form
aijkl = a1δijδkl + a2

(
δikδjl + δilδjk − 2

3δijδkl

)
, where µ1

is the compressibility and µ2 the shear modulus. The
magnetoelastic energy is similar to that for ferromag-
netic materials, where, however, the compressional mag-
netostriction is neglected (γ1 = 0) [13]. We will not take
this approximation for magnetic gels and keep γ1 6= 0,
in order to explore effects due to a nonzero γ1 and how
they can be measured. While γ1 describes the elastic re-
sponse to changing the field strength (or vice versa com-
pression or dilation due to changes in |M |), γ2 is related
to elastic shear and to rotations of M . Depending on
how the “attachment” of the magnetic clusters to the
network actually is realized in a sample, this interaction
may be large or small. Thus measuring the γ’s by their
effects described below, may give some hints on the mi-
croscopic structures. All static susceptibilities, such as
the elastic and magnetoelastic moduli as well as those
describing cross couplings between compression and the
density, entropy density, and concentrations variations
(χρ, χσ, and χc, respectively) can depend on M2 and
thus on magnetic-field strength.

Using Eqs. (1) and (2), the magnetic Maxwell field Hi

is defined in the usual way

Hi =
(

∂ε

∂Bi

)
M ,uij ,...

= Bi −Mi, (3)

while the magnetic molecular field hM
i reads

hM
i =

(
∂ε

∂Mi

)
B,uij ,...

(4)

= −Bi − γijklMjukl + αMi + βM2Mi

Note that because of definition (3), it is not possible to
have a direct coupling between the external field B and
the strain; the deformation of the network is mediated
by the magnetization via the coupling terms ∼ γijkl.

The elastic stress Ψij has the following form

Ψij =
(

∂ε

∂uij

)
M ,B,...

= µijklukl −
γijkl

2
MkMl

+δij (χρδρ + χσδσ + χcδc) (5)
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and depends on the magnetization.

III. EQUILIBRIUM

In equilibrium, both the elastic strain Eq. (5) and
the magnetic molecular field Eq. (4) have to be zero.
Without an external field or external strain there is no
magnetization and no strain in equilibrium. A finite ex-
ternal field, taken along the z axis, B = B0ez, induces an
equilibrium magnetization (M0 = M0ez) and a nonzero
strain u0

ij due to the magnetostriction effect. Neglecting
the couplings of density [14], entropy, and concentration
to the strain tensor, we have

Ψij =
[(

µ1 −
2
3
µ2

)
u0

kk −
(γ1

2
− γ2

3

)
M2

0

]
δij

−γ2M
0
i M0

j + 2µ2u
0
ij = 0, (6)

hM
i = −B0δiz −

(
γ1 −

2
3
γ2

)
M0

i u0
kk

−2γ2M
0
j u0

ij + αM0
i + βM2

0 M0
i = 0. (7)

From hM
x = 0 , hM

y = 0, and Ψxy = 0 it follows that
u0

xz = 0, u0
yz = 0, and u0

xy = 0 accordingly. The remain-
ing conditions give

u0
xx = u0

yy =
µ2γ1 − µ1γ2

6µ1µ2
M2

0 , (8)

u0
zz =

µ2γ1 + 2µ1γ2

6µ1µ2
M2

0 , (9)

leading to the volume change U0 ≡ u0
xx + u0

yy + u0
zz =

(γ1/2µ1)M2
0 . The magnetostrictive volume change of the

ferrogel is determined by the bulk modulus µ1 and by the
coefficient γ1, which couples the trace of the stress tensor
to the magnitude of the magnetization.

From hM
z = 0 we get implicitly the equilib-

rium magnetization as a function of the field B0 =
M0

[
α + βM2

0 −
(
3γ2

1µ2 + 4γ2
2µ1

)
M2

0 / (6µ1µ2)
]
. Writ-

ing this relation in the form χB0 = (1 + χ)M0, a field-
dependent magnetic susceptibility χ results with

1 + χ

χ
= α +

(
β − 3γ2

1µ2 + 4γ2
2µ1

6µ1µ2

)(
χB0

1 + χ

)2

. (10)

The explicit form of Eq. (10) follows from the (truncated)
expansion (2) and is suitable for small external fields only.
For high field intensities, when the magnetization reaches
its saturation value, χ in Eq. (10) has to be replaced by a
more complicated function χ0 = χ(B0), either measured
[15, 16] or calculated from reliable microscopic models.
For the small deviations from equilibrium, which we are
dealing with in the following, the simple form χB0 =
M0 is sufficient for any field strength, when for χ the
appropriate equilibrium value χ0 is taken.

Magnetostriction is a well-known phenomenon in
single- or polycrystalline ferromagnetic solids [17]. A

complicated interaction between the crystalline and do-
main structure with the magnetic moments of the atoms
leads to a connection between elasticity and magnetic
moment, e.g., to a change of volume or shape at the
paramagnetic to ferromagnetic phase transition. Ferro-
gels, however, are isotropic and nonmagnetic without an
external magnetic field. Magnetostriction is then a non-
linear effect. Applying a field, on the other hand, the
induced magnetostriction can be considerably large due
to the superparamagnetic response and the soft rubber
elasticity. The induced deformations, Eqs. (8) and (9),
are of uniaxial symmetry and in this state the ferrogel be-
haves more like a uniaxial ferromagnet than an isotropic
one.

IV. DYNAMICS

The hydrodynamic equations for conserved and slowly
relaxing variables as well as for those associated with
spontaneously broken continuous symmetries are

∂

∂t
ρ + div ρv = 0, (11)

∂

∂t
σ + div σv + divjσ =

R

T
, (12)

∂

∂t
gi +∇j

(
vjgi

+δij [p0 + B · H] + σth
ij + σij

)
= 0, (13)( ∂

∂t
+ vk∇k

)
uij + Yij = 0, (14)

ρ
( ∂

∂t
+ vj∇j

)
c + div jc = 0, (15)( ∂

∂t
+ vj∇j

)
Mi + (M × ω)i + Xi = 0, (16)

where ωi = 1
2εijk∇jvk is the vorticity and

σth
ij = −BjHi − 1

2 (Mjh
M
i −Mih

M
j ) + Ψjkuki. (17)

Using the fact that the energy density, Eq. (1), has to
be invariant under constant rotation [12], eq. (17) can
be simplified as

σth
ij = − 1

2 (BiHj + BjHi) + 1
2 (Ψjkuki + Ψikukj) (18)

The last term in Eq. (18) is nonlinear, but since there
is a finite strain in an external field, it will enter linear
deviations from that constrained equilibrium. The ther-
modynamic pressure p0 is given by

p0 = −ε + Tσ + µρ + g · v. (19)

jσ is the entropy current, in Eqs. (14)–(16) Yij and Xi

are the quasicurrents of the variables associated with bro-
ken translational symmetry (network) and slowly relax-
ing magnetization. To guarantee rotational invariance of
the dynamical equation for the strain field, one must re-
quire Yij = Yji. The source term R/T in the dynamic
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equation for the entropy density is the entropy produc-
tion. The second law of thermodynamics reads R ≥ 0 for
dissipative and reversible process, respectively.

Since we are not dealing with electromagnetic effects,
we can use the static Maxwell equations to determine B

curlH = curl (B −M) = 0, divB = 0. (20)

All the currents can be split into dissipative and into
reversible (R = 0 ) and irreversible (R ≥ 0) parts. Using
general symmetry and invariance arguments and the fact,
that a magnetic field changes sign under time reversal,
we obtain the linear currents

jσR
i = −κR

ij(M)∇jT −DTR
ij (M)∇jµc

+ξTR
ij (M)Ψj , (21)

jcR
i = −DR

ij(M)∇jµc + DTR
ij (M)∇jT

+ξcR
ij (M)Ψj , (22)

σR
ij = −Ψij − cR

kij(M)hM
k − νR

ijkl(M)Akl, (23)

Y R
ij = −Aij + 1

2λM

[
∇i

(
∇ × hM

)
j
+ (i←→ j)

]
− 1

2

[
∇i

{
ξR
jk(M)Ψk + ξTR

jk (M)∇kT

+ξcR
jk (M)∇kµc

}
+ (i←→ j)

]
, (24)

XR
i = bR

ij(M)hM
j + λM (∇ × Ψ)i

−cR
ijk(M)Ajk, (25)

with Aij = 1
2 (∇ivj +∇jvi) and Ψi = ∇jΨij = ∇jΨji.

Again, nonlinear elastic contributions have been ne-
glected. Due to the new degree of freedom (magneti-
zation) there is an additional term in the stress quasi-
current Eq. (24) and a counter term in XR

i , which de-
scribes a dynamic cross coupling between magnetization
and the network. It does not exist in ordinary elastomers
nor in isotropic ferrofluids. Its impact on the sound spec-
trum will be explored in Sec.V B. The new coefficient λM

(reversible dynamic coupling between the magnetization
and the strain tensor) gives a small effect in the dynam-
ics of order ∼ k4. The magnetization-dependent tensors
κR

ij(M), DR
ij(M), DTR

ij (M),νR
ijkl(M), cR

ijk(M), ξTR
ij (M),

ξcR
ij (M), ξR

ij(M), bR
ij(M) are all odd functions of the mag-

netization and are listed to linear order in M0 in the Ap-
pendix.

To derive the dissipative contributions to the currents
it is most convenient to start with the expression for dis-
sipation function R. The dissipative currents are then
obtained by taking variational derivatives with respect
to one thermodynamic conjugate while keeping all oth-
ers fixed. Expanding the dissipation function R up to
second order in the thermodynamic forces we obtain

R =
1
2
κ (∇iT )2 +

1
2
νijklAijAkl +

1
2
D (∇iµc)

2

+
b

2
(
hM

i

)2
+

1
2
ξ (Ψi)

2 + DT (∇jT ) (∇jµc)

+ Ψi

(
ξT∇iT + ξc∇iµc

)
. (26)

Here νijkl is the viscosity tensor and κ, D and DT de-
scribe heat conduction, diffusion, and thermodiffusion,
respectively. The quantity b is the inverse magnetization
relaxation and ξ the self-diffusion constant of the strain
field. The range of possible values of the coefficients in
Eq. (26) is restricted by the positivity of the entropy
production.

We derive the dissipative parts of the currents by tak-
ing the variational derivative of the dissipation function
with respect to the appropriate thermodynamic force

jσD
i = −κ∇iT −DT∇iµc − 1

2ξT Ψi (27)

jcD
i = −D∇iµc −DT∇iT − 1

2ξcΨi (28)

σD
ij = −νijklAkl (29)

Y D
ij = − 1

2

[
∇i

(
ξΨj + ξT∇jT + ξc∇jµc

)
+(i←→ j)

]
(30)

XD
i = bhM

i . (31)

V. EXPERIMENTS

A. Static elongation and shear

In preparation for, and for comparison with, the sound
spectrum we first discuss static elongational and shear
deformations. We assume an external field (along the
z axis) that gives a nonzero magnetization as well as a
deformation in equilibrium. This state is then disturbed
by an external deformation ∆uij by some mechanical de-
vice. Due to the magnetostriction effect this gives also
rise to a change in the magnetization. In the static limit
the magnetic degree of freedom is still in equilibrium and
the change of the magnetization can be obtained from
the condition hM

i = 0, Eq. (4). The applied deforma-
tion gives, directly by Hooke’s law, and indirectly by the
change of the magnetization, an elastic stress. From Eq.
(5) we get

Ψzz = (µ′′ − χ0γ
′′ 2M2

0 )∆uzz

+ (µ′ − χ0γ
′γ′′M2

0 )(∆uxx + ∆uyy), (32)

Ψxx = (µ′′ − χ0γ
′2M2

0 )∆uxx

+ (µ′ − χ0γ
′2M2

0 )∆uyy

+ (µ′ − χ0γ
′γ′′M2

0 )∆uzz, (33)
Ψzx = 2(µ2 − χ0γ

2
2M2

0 )∆uzx, (34)
Ψxy = 2µ2∆uxy (35)

for the elastic stresses. Apart from the elastic moduli
[µ′′ = µ1+(4/3)µ2 and µ′ = µ1−(2/3)µ2], it contains M2

0

corrections due to magnetostriction [γ′ = γ1 − (2/3)γ2

and γ′′ = γ1 + (4/3)γ2], except for deformations that
do not affect the magnetization. Note that, even if the
deformation does conserve the volume (∆uxx + ∆uyy +
∆uzz = 0), the trace of the elastic stress tensor is not
zero, but given by Ψkk = −6χ0γ1γ2M

2
0 ∆uzz. Formulas

(32)–(35) are applicable for small strains only, since it is
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based on Hooke’s law, while for larger strains deviations
from this law due to rubber elasticity are to be expected.

The stress tensor σij not only contains the elastic stress
Ψij , but also the hydrostatic pressure and a nonlinear
combination of elastic stress and strain, Eq. (18). The
former couples to volume deformations via the compress-
ibility κs, defined as κs = ρ2(∂2ε/∂ρ2)−1. The latter
gives rise to linear contributions in the stress tensor, if
an external field is present, since then a finite deformation
(strain) is induced. This is seen in the sound spectrum
discussed below.

B. Propagation of sound

Due to the presence of the permanent polymer network
in ferrogels compared to ferrofluids, there are transverse
as well as longitudinal sound eigenmodes. In this sec-
tion we derive the longitudinal and the transverse sound
of the system with an external magnetic field parallel
to the z axis. We neglect all diffusional processes con-
nected, e.g., with viscosity and heat conduction as well
as their reversible counterparts. Terms with λ and bR co-
efficients are omitted here as well. The first one does not
contribute to the sound velocity, because it is of fourth
order in the wave vector ∼ k. Terms with bR shift the
magnetization relaxation time by ∼ bRM2, and thus give
higher order corrections ∼M4 to the sound spectrum, in
which we are not interested here. Only the relaxation the
magnetization in the field is kept.

Assuming a one-dimensional plane wave with space-
time dependence ∼ exp i(−ωt + k · r) for all deviations
δuij , δMi, vi, δρ from the equilibrium values determined
in Sec. III the linearized set of dynamic equations be-
comes an algebraic one. Let us consider sound in the
two cases, where the external magnetic field and the
equilibrium magnetization are either perpendicular or
parallel to the wave vector. Field fluctuations δBi are
fixed by the static Maxwell equations (20) to δBi =
δMj(δij − kikjk

−2).
In the case where an external field is perpendicular to

the wave vector the sound dispersion relations for longi-
tudinal and for transverse modes, respectively, read, up
to order O(M2) from here on all old µ′ are called µ̃

ω2
l =

k2

ρ

[
µ̃−M0

2

(
µ̃

µ2γ1 − µ1γ2

6µ2µ1
+ χ0 (γ′)2

−
ıω
(
χ0γ

′ − cR
2

)2
ıωχ0 − b

)]
, (36)

ω2
t1 =

k2

ρ

[
µ2 −M0

2 µ2γ1 − µ1γ2

6µ1

]
, (37)

ω2
t2 =

k2

ρ

[
µ2 −M0

2

(
2µ2γ1 + µ1γ2

12µ1
+ χ0γ

2
2

+
γ2

2
−

ıω
(
χ0γ2 − cR

1 + 1
2

)2
ıωχ0 − b

)]
, (38)

where µ̃ = 1/(ρκs)+µ1 + 4
3µ2 and γ′ = γ1− 2

3γ2. Gener-
ally, χ0(B0) brings in an additional dependence on M0,
which however can be neglected in O(M2).

If an external field is parallel to the wave vector we
have the following longitudinal and transverse dispersion
relations

ω2
l =

k2

ρ

[
µ̃−M0

2

(
µ̃

µ2γ1 + 2µ1γ2

6µ2µ1
+ χ0 (γ′′)2

−
ıω
[
χ0γ

′′ −
(
2cR

1 + cR
2

)]2
ıωχ0 − b

)]
, (39)

ω2
t =

k2

ρ

[
µ2 −M0

2

(
2µ2γ1 + µ1γ2

12µ1
+ χ0γ

2
2

−γ2

2
−

ıω
(
χ0γ2 − cR

1 − 1
2

)2
ıωχ0 − b

)]
, (40)

where γ′′ = γ1 + 4
3γ2. As the problem is symmetric in

the plane perpendicular to the magnetic field the two
transverse sounds have identical dispersion relations.

Knowing the dispersion relations for the two geome-
tries one can study sound velocities. The relaxation time
of the magnetization τM = χ0/b is known for ferrofluids
and is typically of order 10−4. Our approach allows us
to investigate two frequency regimes: for ω < 1/τM the
low frequency limit and for ω > 1/τM the high frequency
regime. There is no frequency dependence for the trans-
verse sound mode, where the magnetic field, the wave
vector, and the velocity are mutually perpendicular, Eq.
(37).

Let us first investigate low frequencies (ω < 1/τM ).
The frequency-dependent parts in the square brackets of
the dispersion relations (36)–(40) become dissipative and
do not contribute to the sound velocities. In the case of
the external field being perpendicular to the wave vector
the velocities of the longitudinal cl and the transverse
sounds ct1, ct2 read

c2
l =

µ̃

ρ
−

(
µ̃

µ2γ1 − µ1γ2

6ρµ2µ1
+

χ0 (γ′)2

ρ

)
M2

0 , (41)

c2
t1 =

µ2

ρ
−
(

µ2γ1 − µ1γ2

6ρµ1

)
M2

0 , (42)

c2
t2 =

µ2

ρ

−
(

2µ2γ1 + µ1γ2

12ρµ1
+

2χ0γ
2
2 + γ2

2ρ

)
M2

0 , (43)

while for a parallel field we have

c2
l =

µ̃

ρ
−

(
µ̃

µ2γ1 + 2µ1γ2

6ρµ1µ2
+

χ0 (γ′′)2

ρ

)
M2

0 , (44)

c2
t =

µ2

ρ

−
(

2µ2γ1 + µ1γ2

12ρµ1
+

2χ0γ
2
2 − γ2

2ρ

)
M2

0 . (45)
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The sound speeds at low frequencies and zero field give
information about the compressibility and the elastic
moduli (bulk and shear). The dependence on M2

0 is
due to magnetostrictive effect and completely absent for
γ1 = 0 = γ2. Magnetostriction enters the sound speed
in different ways. There is a direct static coupling of
magnetization and stress in Eq. (5) and the strain de-
pendence of the magnetic molecular field (4), which give
rise to terms linear and quadratic in γ1 and γ2. A similar
term emerges indirectly via the Maxwell stress. The sec-
ond route is dynamic, given by the nonlinear elastic stress
contribution to the stress tensor in Eq. (18), which, how-
ever, is effectively linear due to the non-zero equilibrium
strains. In the sound speeds these contributions are of the
bilinear γµ type. In an external field the effective moduli
measured by sound propagation are therefore different
from those given by the static elastic stress Ψij discussed
in the preceding section. The coincidence of static lin-
ear elasticity and low frequency sound speed is restored
in the limit of vanishing magnetic field, when no mag-
netostrictive deformation is present and the additional
contribution in the stress tensor σij (18) is nonlinear and
absent in the sound spectra. Of course, in this limit the
sound spectra are isotropic as is the ferrogel.

The sound velocities change with an external mag-
netic field basically with the second power of the field,
which is in accordance with experiments on longitudi-
nal sound [16]. There is, however, an additional field
dependence through χ0. Whether the sound velocities
are decreased or increased by the field cannot be estab-
lished by general rules, since the signs of γ1,2 are not
fixed and can be material dependent. Measurements of
transverse and longitudinal sound velocities in the differ-
ent geometries will provide information on the magnitude
and sign of the magnetostrictive and elastic moduli. As a
first approximation the magnetostrictive volume change
(∼ γ1M

2
0 /µ1) can be neglected in those rubbers and only

shape changes remain.
Damping of sound waves generally is rather weak and

given by the imaginary part of the dispersion relation. In
addition to the usual magnetic-field-independent sound
damping due to viscosity and other diffusional processes
there is a field-dependent sound damping in ferrogels.
This is an effect of the reversible, dynamic coupling of the
magnetization to flow, either phenomenological [cR

ijk(M)
in Eq. (25)] or kinematic [εijkMjωk in Eq. (16)] and its
counterparts in the Navier-Stokes equation. For exam-
ple, when the magnetic field is parallel (perpendicular)
to the wave vector a field-dependent damping of longi-
tudinal (transverse) sound Eq. (39) [Eq. (38)] reads,
respectively,

Im(ωl) = −1
2

[
χ0γ

′′ −
(
2cR

1 + cR
2

)]2
ρb

M2
0 k2, (46)

Im(ωt2) = −1
2

(
χ0γ2 − cR

1 + 1
2

)2
ρb

M2
0 k2, (47)

the first of which can be related to the observed increase

of the apparent viscosity due to the magnetic field [18].
In all cases Im < 0, as it should be according to the
second law of thermodynamics.

Let us now investigate the high frequency limit for ω >
1/τM . In the case where an external field is perpendicular
to the wave vector the velocities of the longitudinal cl

and the transverse sounds ct2 read (ct1 is as in the low
frequency limit)

c2
l =

µ̃

ρ
−
(

µ̃
µ2γ1 − µ1γ2

6ρµ2µ1

+
cR
2

(
2χ0γ

′ − cR
2

)
χ0ρ

)
M2

0 (48)

c2
t2 =

µ2

ρ
−
(

2µ2γ1 + µ1γ2

12ρµ1

+
2χ0γ2

(
cR
1 − 1

4

)
−
(
cR
1 − 1

2

)2
χ0ρ

)
M2

0 . (49)

For an external field parallel to the wave vector we have

c2
l =

µ̃

ρ
−
(

µ̃
µ2γ1 + 2µ1γ2

6µ2µ1ρ
(50)

+

(
2cR

1 + cR
2

) [
2χ0γ

′′ −
(
2cR

1 + cR
2

)]
χ0ρ

)
M2

0 ,

c2
t =

µ2

ρ
−
(

2µ2γ1 + µ1γ2

12µ1ρ
(51)

+
2χ0γ2(cR

1 + 1
4 )−

(
cR
1 + 1

2

)2
χ0ρ

)
M2

0 .

The field dependence of the sound velocities contains
the magnetostrictive contributions already present in the
low frequency limit, but in addition also the reversible,
dynamic cross couplings (cR

1 , cR
2 ) between magnetization

and flow (which in the low frequency limit contributed
to the sound damping). Of course, most interesting ex-
perimentally is the transition region ωτM ≈ 1, where the
sound velocities make steps and the damping is enhanced.

C. Shear excitation by temperature oscillations

In ferrogels there are several reversible cross couplings
mediated by material tensors that are linear in the ex-
ternal magnetic field. They belong to the same type of
effects as the Hall and the Righi-Leduc effect. In Eq.
(24) there is such a coupling, described by ξTR

jk (M), be-
tween a temperature gradient and the dynamics of the
elastic degree of freedom. From the form of ξTR

ij (A1)
one can conclude that an applied oscillating temperature
T = T0 +T1exp[i(kz− ωt)], in the presence of a homoge-
neous or gradient magnetic field [19] H = êy(H0 +H1z),
leads to an oscillating shear in the plane perpendicu-
lar to the magnetic field (Fig. 1), since Yxz ∼ a ≡
1
2χ0ξ

TRT1(H1 + ikH0). Oscillating shear uxz is part of
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FIG. 1: Shear excitation uxz in a ferrogel due to applied tem-
perature oscillations along the z direction, in the presence of
a constant or gradient magnetic field in y direction.

the transverse sound discussed in the preceding section.
After the initial transients have died out the excited shear
wave travels with the frequency and wave vector of the
applied temperature, uxz = u0 exp [i(kz − ωt)], with the
complex amplitude u0 given by(

−iω − c2
t1k

2

iω − ν
ρk2

+ ξµ2k
2

)
u0 = ika, (52)

where ct1 is the shear wave velocity (42), ν the shear
viscosity, and ξ the self-diffusion of the strain field (30).
The former comprises of a field-dependent part, which is
space dependent in a gradient field. However, that part
is small compared to the constant one (µ2/ρ) and can
be approximated by its spatial mean or can be neglected
at all here. If the ratio ω/k for the applied temperature
is in the range of the transverse sound velocity, we have
ω � (ν/ρ)k2 and ω � ξµ2k

2, and Eq. (52) gives the
amplitude of the excited shear wave in the long time limit
in the form of a response of a damped harmonic oscillator

u0 =
−akω

ω2
0 − ω2 + 2iωΓ

, (53)

with eigenfrequency ω0 = ct1k and damping 2Γ =
k2(ξµ2 + ν/ρ).

The real part of the strain tensor, which is the mea-
surable quantity, has the form

Re (uxz) = A1,2 cos (kz − ωt + δ1,2) , (54)

where A1,2 = a1,2 kω[
(
ω2

0 − ω2
)2 + 4ω2Γ2]−1/2 and δ2 =

δ, δ1 = δ−π/2 with tan δ =
(
ω2 − ω2

0

)
/ (2ωΓ) for the two

cases of a constant magnetic field a2 = 1
2χ0ξ

TRT1kH0

and a field gradient a1 = 1
2χ0ξ

TRT1H1, respectively.
This reduces to

uxz =
a1k

2Γ
sin (kz − ω0t) (55)

uxz =
a2k

2Γ
cos (kz − ω0t) (56)

in the resonant cases ω = ω0. Of course, this coupling of
temperature to shear also works the other way round, and

an imposed shear wave can excite a temperature wave in
the presence of an appropriate magnetic field (gradient).

Another possibility of shear excitation is the applica-
tion of concentration instead of a temperature oscillations
[see Eq. (24)], although this might be more challenging
experimentally.

VI. CONCLUSION

In this paper we have given the hydrodynamic equa-
tions for magnetic elastomers including the magnetiza-
tion as an independent slowly relaxing variable, which
allows us to study the system for high frequencies as well.
Due to presence of the permanent network the displace-
ment field u turns out to be a truly hydrodynamic vari-
able. The fact that magnetic grains are attached to the
network is expressed by the static coupling of the mag-
netization and the strain tensor. This leads to an ad-
ditional field-dependent contribution to the sound spec-
trum. The contribution to the transverse sound modes
depends on the relative angle between an external field
and the wave vector. From the low frequency limit of the
sound spectrum one can obtain information about the
effective, magnetic-field-dependent elastic moduli. How-
ever, these moduli are different from those measured by
static elongations or shear deformations in an external
field. The reason is that due to the finite magnetostric-
tion the linear response theory is not applicable. Only in
the limit of a vanishing field are they equal and match
the true elastic moduli. In the high frequency limit one
gets a shift in the sound velocities proportional to the dy-
namic coupling between the flow and the magnetization.
This reflects the fact that the magnetization is an inde-
pendent variable. Finally, a shear excitation experiment
in an oscillating temperature gradient plus a gradient of
the magnetic field has been proposed.
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APPENDIX. TENSORS LINEAR IN M

Here we give the form of those tensors that do not ex-
ist without a magnetic field and change sign when the
magnetization changes sign. For simplicity, we restrict
ourselves to the case linear in M . The reversible second
rank magnetization-dependent material tensors, such as
the reversible analog of heat conduction κR

ij(M), diffusion
DR

ij(M), thermodiffusion DTR
ij (M), magnetization relax-

ation bR
ij(M), and the reversible coupling terms between

temperature, concentration, and elasticity, ξTR
ij , ξcR

ij , ξR
ij ,
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are all of the form

κR
ij(M) = κRεijkMk. (A1)

They are antisymmetric κR
ij(M) = −κR

ji(M) according
to Onsager’s relation κR

ij(M) = κR
ji(−M) and give zero

entropy production [20].
The third-rank tensor cR

ijk describing a reversible dy-
namic crosscoupling between flow and magnetization is
symmetric in the two last indices and reads

cR
ijk(M) = cR

1 (δijMk + δikMj) + cR
2 δjkMi (A2)

The reversible analog of the viscosity tensor has one com-
ponent for the isotropic case [20]

νR
ijkl(M) = νR

(
εikpδjl + εilpδjk + εjlpδik

+εjkpδil

)
Mp. (A3)

This fourth-order tensor is symmetric in i, j and in k, l,
but is antisymmetric under the exchange of the first pair
of indices with the second one, thus guaranteeing zero
entropy production.
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