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GENERAL NONLINEAR 2-FLUID HYDRODYNAMICS OF COMPLEX FLUIDS
AND SOFT MATTER

c© 2003 H. Pleiner a and J.L. Hardenb

We discuss general 2-�uid hydrodynamic equations for complex �uids, where one kind is a simple Newtonian
�uid, while the other is either liquid-crystalline or polymeric/elastomeric, thus being applicable to lyotropic liquid
crystals, polymer solutions, and swollen elastomers. The procedure can easily be generalized to other complex �uid
solutions. Special emphasis is laid on such nonlinearities that originate from the 2-�uid description, like the transport
part of the total time derivatives. It is shown that the proper velocities, with which the hydrodynamic quantities are
convected, cannot be chosen at will, since there are subtle relations among them. Within allowed combinations the
convective velocities are generally material dependent. The so-called stress division problem, i.e. how the nematic or
elastic stresses are distributed between the two �uids, is shown to depend partially on the choice of the convected
velocities, but is otherwise also material dependent. A set of reasonably simpli�ed equations is given as well as a
linearized version of an e�ective concentration dynamics that may be used for comparison with experiments.

1 Introduction

The thermodynamic and hydrodynamic proper-
ties of multi-component complex �uids are determined
by the microscopic degrees of freedom of their con-
stituents and the coupling between these degrees of
freedom. Such systems can exhibit rather rich phase
behavior and dynamics, especially when one or more
components is a structured or macromolecular �u-
id [1]. Due in part to the coupling of internal de-
grees of freedom, these systems can also exhibit nov-
el �ow-induced structural evolution phenomena, in-
cluding shear-induced phase transformations and �ow
alignment of constituents on microscopic to mesoscop-
ic length scales. Such structural evolution in turn leads
to nonlinear rheological behavior, such as stress over-
shoots in response to imposed rates of strain, plasticity,
and thixotropy.

The overwhelming complexity of the microscopic
description of these systems, such a detailed descrip-
tion is often not well suited for analysis of the macro-
scopic dynamical behavior. Instead, explicit macro-
scopic models have been developed for this purpose.
Some such models have been obtained by a suitable
coarse-graining procedure starting from a microscop-
ic theory. Others are purely phenomenological models
constrained only by conservation laws, symmetry con-
siderations and thermodynamics. The so-called �two-
�uid� models for binary systems of distinct components
or phases are useful examples of such a macroscopic
approach [2]. In the two-�uid description, each com-
ponent or phase is treated as a continuum described
by local thermodynamic variables (e.g. temperature,
density, and relevant order parameters), and dynami-
cal quantities (e.g. velocity or momentum). In general,
these variables for the constituents are coupled. For in-
stance, the e�ective friction between components in a
binary �uid mixture leads to a drag force in the macro-
scopic description that is proportional to the local ve-
locity di�erence.

Two-�uid models have been employed in many dif-
ferent physical contexts. The two-�uid approach is a
key element of many traditional models for multi-phase
�ow of bubbly liquids, �uid suspensions of particu-
lates, and binary mixtures of simple �uids [3]. Oth-
er examples in condensed matter physics include two-
�uid models for super�uid helium [4], dynamics of plas-
mas [5], transport in superconductors [6], viscoelastici-
ty of concentrated �uid emulsions [7], �ow-induced or-
dering of wormlike micelle solutions [8], �ow of colloidal
suspensions [9]. Two-�uid models have been used ex-
tensively to model a wide range of dynamical phenom-
ena in polymer solutions and binary blends, including
the hydrodynamics modes of quiescent polymer solu-
tions [10, 11], kinetics of polymer dissolution [12], hy-
drodynamics and rheology of polymer solutions and
blends [13]-[19], and polymer migration and phase sep-
aration under �ow [20]-[27].

These examples share certain general features. In
each, two distinct species or coexisting phases (gas and
liquid, normal �uid and super�uid, polymer and sol-
vent, mesogens and solvent etc.) with mass densities ρ1

and ρ2, which are conserved individually in the absence
of chemical reactions, move with distinct velocities v1

and v2, respectively. Due to (usually strong) internal
friction, the momenta of the constituent species, ρ1v1

and ρ2v2, are not conserved individually. Of course,
total momentum is conserved. In most cases of �uid
mixtures the friction is so strong that the velocity dif-
ference v1 − v2 is nonzero for very short times only,
i.e. it is a very rapidly relaxing quantity that is not
included in the hydrodynamic description for binary
mixtures. However, there are systems and situations,
where the relaxation of the relative momenta is slow
enough to have a signi�cant in�uence even on the hy-
drodynamic time scale. Then a two-�uid description is
appropriate and useful.

In this communication we focus on a general nonlin-
ear two-�uid description of complex �uids, where one
species is a viscous Newtonian �uid and the other ei-
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ther a polymer or a liquid crystal. Emphasis is placed
on the rigorous derivation of the dynamic equations
within the framework of hydrodynamics as contrast-
ed to ad-hoc treatments. The resulting equations are
rather general and complicated. They can and have
to be simpli�ed for special applications or systems by
appropriate and well-de�ned approximations. One of
the advantages of starting from the general theory is
the possibility to identify and characterize the approx-
imations made. The hydrodynamic method, described
in some detail in [28]-[30], is quite general and rigor-
ous, being based on symmetries, conservation laws, and
thermodynamics. In the following sections, we provide
a detailed analysis of two-�uid models for lyotropic ne-
matogens in a simple viscous solvent, followed by an
abbreviated extension of this treatment for isotropic
elastomers (e.g. entangled polymer solutions and gels)
in a simple viscous solvent. We close with a discussion
of our general results and their possible implications
for experiments.

2 Thermodynamics

The hydrodynamics of �uid mixtures as described
above is governed by conservation laws (individual
masses, total momentum and total energy), balance
equations for the liquid crystalline degrees of freedom,
for the transient elasticity of polymers and for the
relaxation of relative momentum. There are di�erent
ways of writing the appropriate equations. One popu-
lar choice is to use equations for individual mass den-
sities and individual momentum densities, another to
use the mass density and one concentration variable
and the total momentum density and the relative ve-
locity di�erence. Since they both have their advantages
and disadvantages we will present both ways of descrip-
tion and show, how they are connected. In this and the
following sections we will use a nematic liquid crystal
as the second, complex �uid. Transcription of the for-
mulas to the polymer case will be given in Sec.(8).

The starting point of any macroscopic description
is the total energy E of the system as a function of all
the relevant variables. Since the energy is a �rst order
Eulerian form of the extensive quantities, we can write

E = ε V =
∫
ε dV (2.1)

= E(M1, M2, V, G1, G2, S, M2∇jni, M2δni)

The masses,M1, M2 and momenta G1, G2 of species 1
and 2 are related to the appropriate (volume) densities
by ρ1 = M1/V, ρ2 = M2/V, g1 = G1/V = ρ1v1, g2 =
G2/V = ρ2v2, while for the entropy density σ = S/V .
The nematic degrees of freedom are related to species
2 and consist of director rotations δni. The nematic

phase shows orientational order along the line denot-
ed by n (with n2 = 1) called the director. Since up
and down (along that line) cannot be discriminated, all
equations have to be invariant under a n → −n trans-
formation. Homogeneous rotations do not cost energy,
so in a linear description (of the �eld-free case) δni is
absent in E and only gradients ∇jni enter [31]. We
have kept both terms to cope with the general case.

Introducing thermodynamic derivatives (partial
derivatives where all other variables are kept �xed)
we de�ne temperature T , thermodynamic pressure p,
chemical potentials µ1, µ2 and velocities v1, v2 of the
two �uids, as well as the conjugate �elds χij and ki

connected to the nematic degrees of freedom

T =
∂E

∂S
=
∂ε

∂σ
, p = −∂E

∂V
,

µ1 =
∂E

∂M1
=

∂ε

∂ρ1
, µ2 =

∂E

∂M2
=

∂ε

∂ρ2

v1 =
∂E

∂G1
=

∂ε

∂g1

, v2 =
∂E

∂G2
=

∂ε

∂g2

ki =
∂E

∂(M2ni)
=

∂ε

∂(ρ2ni)
,

χij =
∂E

∂(M2∇jni)
=

∂ε

∂(ρ2∇jni)
(2.2)

Expanding eq.(2.1) into �rst order di�erentials, the
condition dV = 0 leads to an expression for the pres-
sure

p = −ε+ Tσ + ρ1µ1 + ρ2µ̄2 + v1 · g1 + v2 · g2 (2.3)

where we have introduced the e�ective chemical po-
tential of the nematic µ̄2 = µ2 + χij∇jni + kiδni. In
addition, the di�erentials are related by the Gibbs re-
lation

dε = Tdσ + µ1 dρ1 + µ̄2 dρ2 + v1 · dg1 + v2 · dg2

+Ψij d∇jni + hi dni (2.4)

with the more familiar nematic conjugate �elds Ψij =
ρ2χij and hi = ρ2ki. From eqs.(2.3, 2.4) the expres-
sion for the di�erential pressure results (Gibbs-Duhem
relation) that is useful in switching from pressure to
chemical potentials or vice versa

dp = σ dT + ρ1 dµ1 + ρ2 dµ̄2 + g1 · dv1 + g2 · dv2

−Ψij d∇jni − hi dni (2.5)

A second set of equations is obtained by switch-
ing to the total density, ρ = ρ1 + ρ2, and the total
momentum, g = g1 + g2 = ρ1v1 + ρ2v2, which are the
sums of the original quantities and which are both con-
served quantities. The two-�uid nature has then to be
represented by additional variables. A natural choice
seems to be the use of the density and momentum
di�erences. However the latter choice is problematic,
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since it necessarily implies the conjugate quantities al-
so to be the (arithmetic) sums and di�erences of the
original conjugate quantities. Thus, the conjugate to
g would be v1 + v2, which does not re�ect correctly
the possible one-�uid limits ρ1 → 0 or ρ2 → 0. The
physically acceptable conjugate to the total momen-
tum is the mean velocity v de�ned by ρ−1g. Insisting
on v, the mean velocity, to be the conjugate of the to-
tal momentum g, the choice of the remaining variable
describing the di�erent velocities is severely limited.
Compatibility with (2.4) allows as variable only the
velocity di�erence w ≡ v1 − v2 (with m ≡ ρ−1ρ1ρ2w
as conjugate quantity) or more generally αw as vari-
able with α−1ρ1ρ2ρ

−1w as conjugate, where α can
be freely choosen. There is no a-priori advantage for
any of the choices and we will stick to α = 1.1 From
w = g1/ρ1 − g2/ρ2 one gets

v1 = ρ−1g + (1− φ)w, v2 = ρ−1g − φw (2.6)

The representation of the two di�erent densities is less
problematic. A convenient choice for that variable is
the concentration, φ = ρ1/ρ, with ρ2/ρ = 1− φ. If the
expansion coe�cients of the two �uids are the same, φ
can be interpreted as the volume fraction as well. In-
stead of φ one could have used, e.g. the density di�er-
ence ρ1−ρ2 (or any other linear combination of ρ1 and
ρ2 di�erent from ρ) as variable without much change.

After some trivial algebra eqs.(2.3-2.5) can be writ-
ten in the new variables as

p = −ε+ Tσ + ρµ+ ρ−1g 2 (2.7)
dε = T dσ + Π′ dφ+ µdρ+ v · dg + m · dw

+Ψij d∇jni + hi dni (2.8)
dp = σ dT + ρ dµ+ g · dv −m · dw −Π′ dφ

−Ψij d∇jni − hi dni (2.9)

where we have introduced the relative pressure Π′, and
the total chemical potential µ

Π′ = ρ (µ1 − µ̄2) + w · g + ρw2(1− 2φ) ≡ ρΠ (2.10)
µ = µ1φ+ µ̄2(1− φ) + w2φ(1− φ) (2.11)

or vice versa

µ1 = µ+ ρ−1ρ2 (Π−w · v1) (2.12)
µ2 = µ− ρ−1ρ1 (Π + w · v2) (2.13)

where the mean velocity v and the weighted relative
momentum m are de�ned by

v = φv1 + (1− φ)v2 = ρ−1(g1 + g2) (2.14)
m = ρ (1− φ)φw = (ρ2g1 − ρ1g2)ρ

−1 (2.15)

The Gibbs relations connects variables that show dif-
ferent rotational behavior. Energy, entropy, the den-
sities and the concentration are scalar quantities that

do not change under (rigid) rotations, i.e. dε = dσ =
dρ = dρ1 = dρ2 = dφ = 0. The vectors and ten-
sors are transformed according to dni = Ωijnj , dgi =
Ωijgj , dwi = Ωijwj , d∇jni = Ωjk∇kni + ∇jΩiknk,
where Ωij = −Ωji is any constant antisymmetric ma-
trix. The rotational invariance of the Gibbs relation
(2.4,2.8) then leads to the relation

hinj + Ψki∇jnk + Ψik∇knj =
hjni + Ψkj∇ink + Ψjk∇kni (2.16)

which has to be ful�lled by the conjugate quantities.
There are no contributions from the momenta and ve-
locities, since g ‖ v, w ‖ m, and g1,2 ‖ v1,2. Relation
(2.16) is useful for reformulating the stress tensor, in
particular to symmetrize it explicitly [32].

Having set up the thermodynamics of the relevant
variables we are now in a position to establish the struc-
ture of the dynamic equations.

3 Dynamic Equations

For the two �uids there are independent continuity
equations stating that neither mass can be destroyed
nor created, but only transported. Transport can in-
volve convection as well as (relative) di�usion. This
leads immediately to

ρ̇1 +∇i(ρ1v
(1)
i + j

(1)
i ) = 0 (3.1)

ρ̇2 +∇i(ρ2v
(2)
i − j

(1)
i ) = 0 (3.2)

When dealing with components of vectors, the sub-
scripts 1, 2 are written as superscripts for clarity. The
phenomenological mass currents in Eqs.(3.1, 3.2) add
up to zero, since the total mass current is equal to the
total momentum density g = ρv. Eqs.(3.1, 3.2) can be
rewritten in terms of the total density and the concen-
tration as

ρ̇+∇jρ vj = 0 (3.3)

φ̇+ vj∇jφ+ ρ−1∇i

(
ρφ(1− φ)wi + j

(1)
i

)
= 0 (3.4)

show the characteristic di�erence between extensive
quantities, where convection is of the form ∇ · (v∗)
and intensive ones with v ·∇∗.

Note that the concentration does not obey a con-
servation law, except when linearized around a zero-
velocity state or if ρ = const. is assumed. Because the
mass current density of the total �uid is equal to the
momentum density g (= ρv), the total mass is convect-
ed by the mean velocity in (3.3). In Eqs. (3.1, 3.2, 3.4)

1The choice α = ρ1ρ2ρ−1 would just interchange the roles of w and m as variable and conjugate.
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the convective terms are not �xed a priori, since the
phenomenological current j

(1)
1 can contain contribu-

tions proportional to some velocities, thus altering the
e�ective velocity, with which the di�erent quantities
are convected. We will discuss this point extensively
after having derived the full set of equations.

The dynamic equations for the other variables are
even more complicated and also contain phenomeno-
logical parts. These are expressed by yet to be deter-
mined currents. But they also contain convective (or
transport) terms. Therefore, we can set up the follow-
ing equations as an ansatz

ε̇+∇j(ε+ p)vj +∇ij
(ε)
i = 0 (3.5)

σ̇ +∇jσvj +∇ij
(σ)
i = R/T (3.6)

ġi +∇jgivj +∇jσij = 0 (3.7)
ẇi + vj∇jwi +Xi = 0 (3.8)
ṅi + vj∇jni + Yi = 0 (3.9)

containing either the divergence of a current
(j (ε)

i , j
(σ)
i , j

(1)
i , σij) when conservation laws are in-

volved, or quasi-currents (Xi, Yi) in the case of bal-
ance equations for non-conserved variables. Each of the
currents and quasi-currents consists generally of three
parts: A geometric or symmetry related one without
any phenomenological coe�cients, which we will de-
termine below, and two phenomenological parts, which
are either reversible (superscript rev) or irreversible
(superscript dis). The phenomenological parts will be
discussed in section 5. The entropy balance (3.6) is not
a conservation law, since for irreversible processes the
entropy production R has to be positive and only for
purely reversible actions R = 0. In Eqs. (3.3� 3.9) the
convective terms are written down such that all quanti-
ties are convected by the same velocity.2 This is dictat-
ed by the postulation of zero entropy production (these
transport terms are reversible). However, it should be
repeated that the phenomenological reversible currents
may change the e�ective convection velocity, something
we will discuss later.

Putting the dynamic equations (3.3�3.9) into the
Gibbs relation (2.4) the condition R = 0 (R > 0)
for the convective and the reversible (dissipative) phe-
nomenological parts of the currents, leads to the fol-
lowing conditions

σij = δijp+ Ψkj∇ink + σ
(rev)
ij + σ

(dis)
ij (3.10)

Xi = ∇iΠ +X
(rev)
i +X

(dis)
i (3.11)

Yi = Y
(rev)

i + Y
(dis)

k (3.12)

j
(σ)
i = j

(σ,rev)
i + j

(σ,dis)
i (3.13)

j
(1)
i = j

(1,rev)
i + j

(1,dis)
i (3.14)

with the generalized conjugate to the nematic degrees
of freedom h̄i = hi−∇jΨij = ρ2(ki−∇jχij). The stress
tensor σij contains the isotropic pressure p (2.7), while
the quasi-current Xi of the relative velocity contains
the gradient of Π, the relative pressure divided by the
total density, (2.10). The terms related to the nematic
degrees of freedom are well-known from ordinary nema-
todynamics. The energy conservation law is redundant
here, because of the Gibbs relation (2.4) and j (ε)

i is not
needed.

The phenomenological parts have to ful�ll (up to
an irrelevant divergence term)3

R = −j (σ,∗)
i ∇iT − j

(1,∗)
i ∇iΠ− σ

(∗)
ij ∇jvi

+h̄i Y
(∗)

i +miX
(∗)
i ≥ 0 (3.15)

with the equal sign (> sign) for ∗ = rev (∗ = dis),
respectively.

Eq.(3.15) also reveals the equilibrium conditions

∇iT = 0 ∇iΠ = 0 Aij = 0
h̄i = 0 mi = 0 (3.16)

where 2Aij = ∇jvi +∇ivj .
Before we will determine the phenomenological

parts in (3.10�3.13), we �rst have a look into the 2-
�uid statics.

4 Statics

The statics is given by the connection of thermo-
dynamic conjugates with the variables. The conjugates
are de�ned by partial derivatives of the energy density
(2.2). Thus one can either write down a phenomenolog-
ical energy expression and take the derivatives or give
directly these relations under the proviso that mixed
derivatives are equal. Two of these connections have
already been given in eq.(2.13) relating v with g and
m with w. Of course, these are not really static re-
lations. They are �xed (and not of phenomenological
nature), since the mass current ρv is identical to the
momentum density and since the kinetic energy density
is (1/2)ρ1v

2
1 + (1/2)ρ2v

2
2.

The 3 scalar conjugates {T, Π, µ} have to be ex-
pressed by the variables {σ, φ, ρ} or using the other
set of variables {σ, ρ1, ρ2} and conjugates {T, µ1, µ2}
by

δT =
T

CV
δσ +

1
ρα1

δρ1 +
1
ρα2

δρ2 (4.1)

µ1 =
1

ρ2κ1
δρ1 +

1
ρ2κ3

δρ2 +
1
ρα1

δσ (4.2)

µ̄2 =
1

ρ2κ2
δρ2 +

1
ρ2κ3

δρ1 +
1
ρα2

δσ (4.3)

2In the energy conservation law (3.5) the free enthalpy ε + p is convected, cf.[30]
3The true condition is R

R dV ≥ 0.
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The other conjugates Π and µ have been related to
µ1 and µ̄2 in (2.10,2.11) and are therefore also fully
determined

δT =
T

CV
δσ +

1
αφ
δφ+

1
ραρ

δρ (4.4)

Π =
1
ρκφ

δφ+
1

ρ2κπ
δρ+

1
ραφ

δσ + w · v

+w2(1− 2φ) (4.5)

µ =
1

ρ2κµ
δρ+

1
ρκπ

δφ+
1
ραρ

δσ + w2φ(1− φ) (4.6)

with

αφ
−1 = α1

−1 − α2
−1 (4.7)

αρ
−1 = φα1

−1 + (1− φ)α2
−1 (4.8)

κφ
−1 = κ1

−1 + κ2
−1 − 2κ3

−1 (4.9)
κπ

−1 = φκφ
−1 − κ2

−1 + κ3
−1 (4.10)

κµ
−1 = φ2κ1

−1 − (1− φ)2κ2
−1 (4.11)

Eqs.(4.1�4.3) as well as (4.4�4.6) contain 6 static sus-
ceptibilities as compared to 3 in a 1-�uid description.
In addition to the speci�c heat CV there are 2 ther-
mal expansion coe�cients (since there are 2 densities)
and 3 compressibilities (2 diagonal and one cross term).
Eqs.(4.1�4.3) are linear in the deviations from equi-
librium, while (4.4�4.6) explicitly contains nonlinear
corrections involving velocities. Of course, the coe�-
cients can still be phenomenological functions of the
scalar variables (e.g. T or σ, p or ρ, ρ1 and ρ2 and
even w2) giving rise to additional nonlinearities that
come with (usually) small coe�cients. Note that ne-
glecting cross-susceptibilities either in (4.1�4.3) or in
(4.4�4.6) denotes two physically distinct (and incom-
patible) approximations, the justi�cation of either one
is not obvious a priori.

Of course, there are situations where one has to go
beyond the approximation used in the static equations
above. Describing spinodal decomposition of the �uids,
e.g. by an energy density ε = aφ2 + b [(1 − φ) ln(1 −
φ) +χφ(1−φ)] + c φ4 + d (∇1φ)2 immediately leads to
nonlinear and gradient terms w.r.t. φ.

What is left is the determination of h̄i = hi−∇jΨij

in terms of ni; cross-couplings to other variables are not
possible due to symmetry. Thus this part of the statics
is identical to that of ordinary nematics and can be
taken over without any change

Ψij = Kijkl∇lnk (4.12)

hi = δ⊥iq
∂Kpjkl

2∂nq
(∇jnp)(∇lnk)− χa(H ·n)Hi

−εa(E ·n)Ei (4.13)

withKijkl = K1 δ
⊥
ij δ

⊥
kl+K2 np εpij nq εqkl+K3 nj nl δ

⊥
ik,

the Frank gradient energy, and the transverse Kro-
necker symbol, δ⊥ij = δij − ninj . Orientation e�ects

due to static external magnetic and electric e�ects en-
ter through the diamagnetic (χa) and dielectric (εa)
anisotropy. For positive anisotropies the director is par-
allel to the external magnetic or electric �eld in equi-
librium, which leads to a restoring torque outside equi-
librium, e.g. to a (linearized) contribution to hi =
χaH2δni (with niδni = 0). For negative anisotropies
the director is perpendicular to the external �elds and
e.g. hi = |χa|(H · δn)Hi.

Since Ψij and hi are proportional to ρ2, so are the
Kn's (and χa, εa). Again (4.12) is linear in the devia-
tions from equilibrium, but the inherent dependence of
the material tensor on the direction n leads to nonlin-
earities in (4.13).

5 Phenomenological Part of the

Dynamics

We now close our system of equations by setting up
the connection between the currents and the thermo-
dynamic conjugates (or rather their gradients usually
called thermodynamic forces). For the irreversible part
this is done by writing the entropy production in terms
of the forces

2R = κij(∇iT )(∇jT ) +Dij(∇iΠ)(∇jΠ)

+2D (T )
ij (∇iΠ)(∇jT ) + γ−1

1 δ⊥ij h̄i h̄j

+νijkl(∇jvi)(∇lvk) + ξ′ijmimj (5.1)

including heat conduction, di�usion and thermodif-
fusion (κij , Dij , D

(T )
ij , respectively, all of the form

κij = κ⊥δ
⊥
ij + κ‖ninj), director orientational viscosi-

ty γ1, and viscosity related to gradients of the mean
velocity νijkl. The latter has a νijkl = νklij symmetry
and is of the uniaxial form [28] characteristic for nemat-
ic systems. The last term in (5.1) describes the mutual
friction between the two species as will become clear
below. In (5.1 we have neglected viscosity-like contribu-
tions involving the relative velocity ∇jmi, since there
is already dissipation due to mi. A more complete dis-
cussion of viscosity in a 2-�uid discussion is given in
the Appendix. The dissipation function given above
is bilinear in the forces, an approximation commonly
called linear irreversible thermodynamics. Nevertheless
it leads to nonlinearities due to (implicit and explicit)
dependences of transport tensors on the variables.

According to (3.15) the dissipative parts of the phe-
nomenological currents then follow from di�erentiating
R

j
(σ,dis)
i = −(∂R)/(∂∇iT )

= −κij∇jT − ρ φ(1− φ) d (T )
ij ∇jΠ (5.2)

Y
(dis)

i = (∂R)/(∂h̄i) = γ−1
1 δ⊥ij h̄j (5.3)
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σ
(dis)
ij = −(∂R)/(∂∇jvi) = −νijkl∇lvk (5.4)

X
(dis)
i = (∂R)/(∂mi) = ξ′ij mj (5.5)

j
(1,dis)
i = −(∂R)/(∂∇iΠ)

= −ρ dij∇jΠ− ρ φ(1− φ) d (T )
ij ∇jT (5.6)

where we have introduced the usual form of the di�u-
sion (Dij = ρ dij) as well as the thermo-di�usion ten-
sor (D (T )

ij = ρ φ(1−φ) d (T )
ij ). The ratios d (T )

∗ /d∗ (with
∗ ∈ {⊥, ‖}) and d (T )

∗ /κ∗ are called the Soret and the
Dufour coe�cients, respectively (the latter being ne-
glected usually in liquids). The viscosity term in (5.4)
has the same form as in a 1-�uid description. For a
more general treatment of viscosity-like contributions
cf. Appendix.

In ad-hoc treatments of 2-�uid systems the mutual
friction of the two species is introduced via an inter-
action force f12 in the momentum equations for the
single �uids, ρ1v̇1 = f12 and ρ2v̇2 = −f12 preserving
total momentum. The force is related to the veloci-
ty di�erence, f12 = −ξ ρ1 ρ2 w and is non-zero only
if both �uids are present. This translates directly into
ẇ = −ξ ρw and can be compared to (5.5). First, in
a nematic environment the force f12 is not necessarily
parallel to w due to the possible anisotropy, rendering
the ξ to be a tensor ξij = ξ⊥δ

⊥
ij +ξ‖ninj . Then compar-

ison with (5.5) gives ξij = φ(1−φ)ξ′ij , which shows that
the ad-hoc choice for f12 is the only possible one with-
in linear irreversible thermodynamics. Of course, there
is room for suitable nonlinear extensions (e.g. ∼ f3

12 or
ξ being a function of scalar state variables like T , φ, or
ρ etc.).

The reversible part of the dynamics is either dictat-
ed by symmetries or phenomenological. The symmetry
parts have been discussed in sec.5 and are listed in
eqs.(3.10�3.13). The phenomenological reversible cur-
rents cannot be derived from any potential (especially
not from any kind of Hamiltonian, despite being re-
versible). They are most easily derived by writing down
all symmetry-allowed contributions to the various cur-
rents and then make sure that the entropy production
(3.15) is zero. We �nd

Y
(rev)

i = −λijk∇jvk − λ
(m)
ijk ∇jmk

+β1mj∇jni (5.7)

σ
(rev)
ij = −λkji h̄k

+2β2mi wj + β ′
2(migj +mjgi) (5.8)

X
(rev)
i = βij ∇jT + γij ∇jΠ−∇j(λ

(m)
kji h̄k)

+(β2 wj + β ′
2 gj)(∇jvi +∇ivj)

+β3mj(∇jwi −∇iwj)− β1 h̄j ∇inj

+β4wj(∇jvi −∇ivj)
+β5(mimj∇j −m2∇i)F (5.9)

j
(σ,rev)
i = βij mj (5.10)

j
(1,rev)
i = γij mj (5.11)

with 2λijk = λ1δ
⊥
ij nk +λ2δ

⊥
ik nj , 2λ (m)

ijk = λ
(m)
1 δ⊥ij nk +

λ
(m)
2 δ⊥ik nj , and βij = β⊥δ

⊥
ij + β‖ ninj and γij =

γ⊥δ
⊥
ij + γ ‖ ninj and F any function of the scalar vari-

ables or conjugates (e.g. T , ρ, φ). Since the term in-
volving F is already of cubic order, we will neglect it in
the following and suppress similar terms in other equa-
tions. Of the four �ow alignment parameters λ, only
three are independent as will be discussed below. The
βij-tensor in (5.9,5.10) describes a reversible entropy
(energy) current due to a non-zero velocity di�erence
as well as a change in the velocity di�erence due to a
temperature gradient. In the limit of large ξ the γ and
β parameters are related to di�usion and thermodi�u-
sion (see below). The 1-�uid description is obtained in
the limit of very large mutual friction, ξ → ∞, which
implies w → 0. The usual nematodynamics (with an
additional concentration variable) is regained, while
ρξw stays �nite accommodating Eqs.(3.8,5.5,5.9) and
is slaved by the other variables.

6 Convective Velocities, Stress

Division, and Concentration

Dynamics

In (5.7�5.11) we have introduced terms, which
are compatible with symmetries and R = 0, involv-
ing quadratic nonlinearities in the di�erent velocities.
Among them the β1 term has a form quite similar to the
convective term in (3.9). Thus the actual velocity, with
which ni is convected, is vconv = ρ−1ρ1(β1ρ2 + 1)v1 +
ρ−1ρ2(−β1ρ1 + 1)v2 and can be either v1, v2 or some-
thing in-between, depending on β1. Since it is hard to
imagine that ni is convected with a velocity larger than
max(| v1 |, | v2 |), β1 is bounded ρ−1

1 < β1 < −ρ−1
2 .

If one accepts the reasonable assumption that ni is
convected with the velocity of the nematic �uid v2,
then β1 = −ρ−1

2 is �xed (while for β1 = 0, there is
vconv = v).

The choice of vconv has additional implications for
the �ow alignment parameters λ. Since the director
does not rotate in a frame that corotates with it, the
quasicurrent Yi couples to the vorticity by Y rot

1 =
εijknjω

conv
k , where 2ω conv

k ≡ curlvconv. For vconv = v

this implies λ(m)
1 = λ

(m)
2 and λ2 − λ1 = 2, or in the

usual parameterization λ1 = λ− 1 and λ2 = λ+ 1. For
vconv = v2 the conditions are

λ1 = λ− 1, λ2 = λ+ 1,

−ρ2λ
(m)
1 = λ̄− 1, −ρ2λ

(m)
2 = λ̄+ 1 (6.1)
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In any case only two of the λ's are independent.
The phenomenological contribution ∼ γij in (5.11)

a�ects the convection of the densities ρ1 and ρ2 in (3.1,
3.2). For γ⊥ = γ ‖ = 0 the densities are convected with
v1 and v2, respectively, while φ in (3.4) moves with the
velocity (1/ρ)(ρ2v1 + ρ1v2). All these quantities (ρ1,
ρ2, ρ, and φ) are convected with v for γ⊥ = γ ‖ = −1.
Of course, other choices of the γ's (made either by a
theorist or by nature!) will lead to di�erent convection
velocities.

Somewhat more involved is the question of the con-
vective velocity for the di�erent momenta. Because of
g = ρv, the total momentum has to be convected with
v requiring β′2 = 0. If also w is convected with v then
β2 = β3 = β4 = 0, additionally, with the consequence
that also the individual momenta, g1 and g2, are con-
vected with v. On the other hand, for g1 and g2 to be
convected with v1 and v2, respectively, i.e.

ġ
(1)
i +∇jg

(1)
i v

(1)
j +X

(1)
i = 0 (6.2)

ġ
(2)
i +∇jg

(2)
i v

(2)
j +X

(2)
i = 0 (6.3)

where

X
(1)
i =

ρ1ρ2

ρ
Xi +

ρ1

ρ
∇jσij −

ρ1

ρ
wi∇jmj

−mj∇jv
(1)
i (6.4)

X
(2)
i = −ρ1ρ2

ρ
Xi +

ρ2

ρ
∇jσij −

ρ2

ρ
wi∇jmj

+mj∇jv
(2)
i (6.5)

in order to be compatible with (3.7,3.8), the β-
parameters have to be β2 = 1/2, β3 = (1/ρ1)− (1/ρ2),
and β4 = 1/2 , thus ensuring that Xi and X2 do not
contain additional transport terms. This choice of pa-
rameters results in (ρ2v1 + ρ1v2)/ρ to be the con-
vective velocity for w (which is the same as for φ,
when ρ1,2 are convected with v1,2). In addition the
momentum current density due to �ow then reads
gjvi + wjmi = ρ1v

(1)
i v

(1)
j + ρ2v

(2)
i v

(2)
j , which is the

expected expression.
The terms proportional to h̄i in (5.8,5.9) constitute

forces due to the nematic orientational elasticity. Gen-
erally they act on both �uids. Using (6.4,6.5) they read
in linearized form

ġ
(1)
i |nem = φ (λkji + ρ2λ

(m)
kji )∇j h̄k (6.6)

ġ
(2)
i |nem = (1− φ) (λkji − ρ1λ

(m)
kji )∇j h̄k (6.7)

Hence, for λ (m)
ijk = 0 (λ (m)

1 = 0 = λ
(m)
2 ) this nematic

force is distributed on �uid 1 and �uid 2 according to
the ratio of ρ1/ρ2. It should be noted, however, that
this kind of nematic stress division is only compatible
with the choice of n being convected by v, while it is
incompatible with the choice of v2 as the convective ve-
locity for n (cf. (6.1)). Another reasonable case for the

stress division problem is obtained for λijk = −ρ2λ
(m)
ijk

(λ1 = −ρ2λ
(m)
1 and λ2 = −ρ2λ

(m)
2 ). In that case the

nematic force only acts on �uid 2 (the nematic compo-
nent). This case is compatible with �uid 2 being con-
vected with v2 and the force then reads

ġ
(2)
i |nem =

1
2

((λ − 1)δ⊥kjni + (λ+ 1)δ⊥kinj)∇j h̄k

= λkji∇j h̄k (6.8)

which is the form familiar from 1-�uid nematics. Thus,
the so-called stress division problem (how h̄i in the
stress tensor is divided between the two �uids) depends
not only on speci�c material properties expressed by
the phenomenological parameters λ (m)

1,2 and λ1,2, but
is also intrinsically linked to the question of the appro-
priate convection velocity.

In order to verify experimentally the choices above,
it seems to be di�cult to directly measure speci�c con-
vection velocities or the division of the nematic stress.
However, there are situations, where these choices can
be veri�ed indirectly. Linearizing the dynamic equation
for the relative velocity (3.8,3.11,5.5,5.9) and Fourier
transform it w.r.t. time, w can be expressed by all the
other variables. This can be used to eliminate w e.g.
from the linearized dynamic equation for the concen-
tration (3.4) leading to

iωφ− d eff
ij ∇i∇jΠ− ρ1ρ2

ρ2
d

(T ) eff
ij ∇i∇jT

+λ(φ)(n ·∇)divh = 0 (6.9)

where contributions of order O(∇4) have been neglect-
ed. The e�ective di�usion and thermo-di�usion (Soret)
coe�cients have got additional frequency dependent
contributions due to the 2-�uid degree of freedom

d eff
∗ = d∗ +

ρ1ρ2

ρ2

(1 + γ∗)2

ρ ξ∗ + iω
(6.10)

d
(T ) eff
∗ = d

(T )
∗ +

β∗(1 + γ∗)
ρ ξ∗ + iω

(6.11)

where the subscript ∗ stands for either ‖ or ⊥. There
is also a dynamic coupling to the nematic degree of
freedom due to

λ(φ) =
ρ1ρ2

2ρ2

(
λ

(m)
1

1 + γ‖

ρξ‖ + iω
+ λ

(m)
2

1 + γ⊥
ρξ⊥ + iω

)
(6.12)

These possible additions to the concentration dynam-
ics, however, depend on the choices for the convection
velocities as well as on the way how the nematic stress
has been divided among the two �uids. Assuming the
densities ρ1,2 to be convected with the mean veloci-
ty v (implying γ‖ = γ⊥ = −1) the additional contri-
butions to di�usion and thermo-di�usion are all zero
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as well as the coupling to the nematic director. On
the other hand, for ρ1,2 to be convected with v1,2 re-
spectively (γ‖ = γ⊥ = 0), both, di�usion and thermo-
di�usion show a dispersion step around ω ≈ ρ ξ. For a
nematic stress division among �uid 1 and 2 according
to the ratio ρ1/ρ2 (implying λ(m)

1 = λ
(m)
2 = 0) there

is no dynamic in�uence of the nematic degree of free-
dom on the concentration (λ(φ) = 0), while for any
other choice there is one. In particular, if only �uid
2 carries nematic stress (and ρ1,2 are convected with
v1,2, respectively), this dynamic coupling is given by
λ(φ) = −(ρ1/2ρ3)[λ̄(ξ−1

‖ + ξ−1
⊥ )− ξ−1

‖ + ξ−1
⊥ ] for strong

friction (ρξ∗ � ω).

7 Simpli�ed 2-Fluid Nematic

Equations

In the preceding sections we have derived the most
general and complete set of 2-�uid equations for a ne-
matic and Newtonian mixture. Special emphasis has
been laid on the correct form of the nonlinearities that
come with the 2-�uid description. However, these equa-
tions are for most purposes unnecessarily complicated
and can be simpli�ed using reasonable assumptions.
Starting from the correct general equations such as-
sumptions, clearly spelled out, lead to controlled ap-
proximations and to a set of 2-�uid equations, whose
limitations and implicit assumptions are clear and well
de�ned in contrast to most ad-hoc approaches.

Here we want to display explicitly 2-�uid hydrody-
namics for a nematic/simple �uid mixture under the
following assumptions,
a) convection with natural velocities (for n, g2, ρ2

and g1, ρ1 this is v2 and v1, respectively, or explic-
itly β1 = −ρ−1

2 , β2 = β4 = 1/2, β3 = ρ−1
1 − ρ−1

2 ,
γ⊥ = 0 = γ ‖ and eq.(6.1));
b) the linearized orientation-elastic force acts on the
nematic �uid (index 2) only (i.e. λ1,2 = −ρ2λ

(m)
1,2 );

c) global incompressibility, δρ = 0 (i.e. δρ1 = −δρ2);
d) neglecting the phenomenological reactive entropy
current (βij = 0);
e) linearizing the phenomenological dissipative cur-
rents, but keeping quadratic nonlinearities otherwise.

Then the following set of equations is obtained:
The incompressibility condition (in 3 equivalent ver-
sions)

0 = div v (7.1)
0 = w ·∇ρ1 + ρ1div v1 + ρ2div v2 (7.2)
0 = w ·∇φ+ φdiv(1− φ)w − (1− φ) divφw (7.3)

the concentration dynamics (in 3 equivalent versions)

φ̇+∇i (φvi + φ(1− φ)wi)− dij∇i∇j(µ1 − µ̄2)

−φ(1− φ)d (T )
ij ∇j∇iT = 0 (7.4)

ρ̇1 + v1 ·∇ρ1 + ρ1divv1 − ρ dij∇i∇j(µ1 − µ̄2)

−ρ1ρ2

ρ
d

(T )
ij ∇i∇jT = 0 (7.5)

ρ̇2 + v2 ·∇ρ2 + ρ2divv2 + ρ dij∇i∇j(µ1 − µ̄2)

+
ρ1ρ2

ρ
d

(T )
ij ∇i∇jT = 0 (7.6)

the entropy dynamics (heat conduction equation)

σ̇ + vi∇iσ − κij∇i∇jT

−ρ1ρ2

ρ
d

(T )
ij ∇i∇j(µ1 − µ̄2) = 0 (7.7)

the nematic director dynamics

ṅi + v
(2)
j ∇jni − λijk∇jv

(2)
k

−ρ1

ρ2
λijkwk∇jφ+ γ−1

1 δ⊥ij h̄j = 0. (7.8)

There is a (nonlinear) coupling to the concentration
variable, which is not possible in the 1-�uid descrip-
tion.
For the momentum balance of the two di�erent species
we get

ρ1v̇
(1)
i + ρ1v

(1)
j ∇jv

(1)
i +

ρ1

ρ
∇i(p+

1
2
ρ2(v2

1 − v2
2))

+
ρ1ρ2

ρ
∇i(µ1 − µ̄2) +

ρ1

ρ
∇j(Ψkj∇ink)

+
ρ1

ρ
h̄j∇inj +

ρ1

ρ2
λkjih̄k∇jφ+ ξijρ1ρ2wj

−ν (1)
ijkl∇j∇lv

(1)
k = 0 (7.9)

ρ2v̇
(2)
i + ρ2v

(2)
j ∇jv

(2)
i +

ρ2

ρ
∇i(p−

1
2
ρ1(v2

1 − v2
2))

−ρ1ρ2

ρ
∇i(µ1 − µ̄2) +

ρ2

ρ
∇j(Ψkj∇ink)

−ρ1

ρ
h̄j∇inj −

ρ1

ρ2
λkjih̄k∇jφ−∇j(λkjih̄k)

−ξijρ1ρ2wj − ν
(2)
ijkl∇j∇lv

(2)
k = 0 (7.10)

Note that although we made the approximation that
the linear orientational-elastic stress does only act on
�uid 2, there are inevitably nonlinear contributions to
�uid 1, too. There is also a (nonlinear) coupling of �uid
1 to the concentration, if nematic distortions (h̄i 6= 0)
are present. In (7.9,7.10) cross-viscosities have been ne-
glected (cf. Appendix).

In order to facilitate actual calculations we also give
eqs.(7.9,7.10) as dynamic equations for the total mo-
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mentum and for the relative velocity

ρv̇i +∇ip+ ρ∇j

(
vivj + φ(1− φ)wiwj

)
(7.11)

+∇j

(
Ψkj∇ink − λkjih̄k

)
− νijkl∇j∇lvk = 0

ẇi +
(
vj + (1− 2φ)wj

)
∇jwi (7.12)

+∇i

(
µ1 − µ̄2 + v · w + (

1
2
− φ)w2

)
+ρξijwj +

h̄j

ρ2
∇inj +∇j

(λkjih̄k

ρ2

)
= 0

Note that the approximation for the viscosities made
in (7.12,7.12) is not compatible with that used in
(7.9,7.10); their interrelation is discussed in the Ap-
pendix.

Due to the incompressibility condition the pressure
is no longer an independent variable nor is it given by
the other variables (i.e. (2.5) or (2.9) cannot be used),
but it serves as an auxiliary quantity to ensure the in-
compressibility for all times, i.e. divv̇ = 0, which leads
to the very complicated condition that determines δp

∆p = −∇i∇j (ρ1v
(1)
i v

(1)
j + ρ2v

(2)
i v

(2)
j )

−∇i∇j (Ψkj∇ink) + λ∇i∇j (δ⊥kjnih̄k)
+νijkl∇i∇j∇lvk (7.13)

Although δp does not show up in the dynamical equa-
tions, it is still present in boundary conditions etc.
and it contains combinations of the viscosities di�er-
ent from those present in the incompressible dynamical
equations.4 In contrast to 1-�uid descriptions for sim-
ple �uids, where the incompressibility condition leads
to a considerable mathematical simpli�cation, this is
no longer the case for a 2-�uid description due the
complicated form of (7.13), even if incompressibility
is a very good approximation in physical terms.

Of the statics (4.1�4.6) only the following equations
remain

δT = TC−1
V δσ + α−1

φ δφ (7.14)

δ(µ1 − µ̄2) = ρ−1κ−1
φ δφ+ ρ−1α−1

φ δσ (7.15)

with δφ = ρ−1δρ1 = −ρ−1δρ2, while (4.12) and (4.13)
are unchanged. Note that δµ is not needed, but follows
from δp via eq. (2.9).

8 Isotropic Viscoelastic Fluids

In this section we discuss the 2-�uid description of
isotropic viscoelastic �uids by choosing a Newtonian
�uid as �uid 1 and an elastic medium as �uid 2. The

latter can be a permanent network (showing e.g. di�u-
sion) or a temporary one relaxing on a �nite time scale.
The considerations for setting up a complete nonlin-
ear 2-�uid description for such systems is quite similar
to that of the 2-�uid nematic discussed in detail in
the previous sections - only that the nematic degree of
freedom ∇jni has to be replaced by the Eulerian strain
tensor Uij , which we use to describe the elastic degree
of freedom. In the following we present an abbreviated
discussion, starting with the general energy expression.

8.1 Thermodynamics

In analogy with the development in section 2, the
general energy expression for an isotropic elastomer
network immersed in a Newtonian solvent is given by

E = ε V =
∫
ε dV

= E(M1, M2, V, G1, G2, S, M2Uij) (8.1)

from which the conjugate quantities are derived. The
elastic stress, conjugate to the strain, is Φ′

ij =
∂E/∂(M2Uij) = ∂ε/∂(ρ2Uij) ≡ ρ−1

2 Φij , while the de�-
nitions of the other conjugates (2.2) remain unchanged
(except that they are to be taken at constant Uij

rather than constant ∇jni). With the new de�nition
µ̄2 = µ2 + ρ−1ΦijUij the expressions for the pressure
(2.3,2.7) and the relations of the di�erent sets of con-
jugates (2.10-2.13) remain unchanged, while the Gibbs
and Gibbs-Duhem relations read

dε = Tdσ + µ1 dρ1 + µ̄2 dρ2 + v1 · dg1

+v2 · dg2 + Φij dUij (8.2)
= T dσ + Π dφ+ µdρ+ v · dg + m · dw

+Φij dUij (8.3)
dp = σ dT + ρ1 dµ1 + ρ2 dµ̄2 + g1 · dv1

+g2 · dv2 − Φij dUij (8.4)
= σ dT + ρ dµ+ g · dv −m · dw − Φij dUij (8.5)

Rotational invariance of the Gibbs relation (8.2,8.3)
leads to the condition

UikΦkj = UjkΦki (8.6)

which, as is seen later on, ensures the stress tensor to
be symmetric.

8.2 Statics

The conjugate quantities de�ned by the Gibbs re-
lation (8.2,8.3) are linked to the variables by a set of
phenomenological equations containing static suscepti-
bilities as parameters. This constitutes the static part

4Incompressibility 'reduces' the number of independent components of the viscosity tensor from �ve to three (in the uniaxial
case), only if a rede�nition of the pressure is done, cf. [28] p.41f and [33].
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of the hydrodynamics. Instead of the nematic molec-
ular �elds hi and ψij we now have the elastic stress
Φij as conjugate �eld. As a symmetric 2-rank tensor
it consists of a scalar quantity, the trace Φii and the
deviator Φ (0)

ij = Φij − (1/3)δijΦkk. Being a scalar Φkk

can couple to the other scalar variables like densities,
concentration or entropy, just like the 3 other scalar
conjugates {T, Π, µ or µ1, µ2} by

δT =
T

CV
δσ +

1
ρα1

δρ1 +
1
ρα2

δρ2 +
1
α3
Ukk

=
T

CV
δσ +

1
αφ
δφ+

1
ραρ

δρ+
1
α3
Ukk (8.7)

µ1 =
1

ρ2κ1
δρ1 +

1
ρ2κ3

δρ2 +
1
ρα1

δσ

+
1
ρκ4

Ukk (8.8)

Π =
1
κφ
δφ+

1
ρκπ

δρ+
1
αφ
δσ +

1
κu
Ukk

+w · g + ρw2(1− 2φ) (8.9)

µ̄2 =
1

ρ2κ2
δρ2 +

1
ρ2κ3

δρ1 +
1
ρα2

δσ

+
1
ρκ5

Ukk (8.10)

µ =
1

ρ2κµ
δρ+

1
ρκπ

δφ+
1
ραρ

δσ +
1
ρκρ

Ukk

+w2φ(1− φ) (8.11)

Φkk = clUkk +
1
α3
δσ +

1
ρκ4

δρ1 +
1
ρκ5

δρ2

= clUkk +
1
α3
δσ +

1
ρκu

δφ+
1
ρκρ

δρ (8.12)

Φ (0)
ij = ctr(Uij −

1
3
δijUkk) (8.13)

where � in addition to (4.7�4.11)

κρ
−1 = φκ4

−1 + (1− φ)κ5
−1 (8.14)

κu
−1 = κ4

−1 − κ5
−1 (8.15)

involving 2 new generalized compressibilities κ4,5 or
κu,ρ and one expansion coe�cient α3 related to the
trace of the elastic strain Ukk. It should be noted that
for real solids at �nite temperatures Ukk 6= δρ/ρ in
contrast to ideal elasticity theory. The reason are the
point defects, which allow not only the dissipative mo-
tion described above, but also static temperature and
pressure changes due to Ukk even at constant density.
The new static susceptibilities cl and ctr are the usual
elastic moduli of Hooke's law. The longitudinal one is
related (in addition to the compressibility κµ) to the
sound velocity. The transverse modulus leads to trans-
verse sound, which is however relaxing due to (8.26) if
ζl and ζtr are not zero.

8.3 Dynamics

The dynamical equations for the elastomeric and
solvent degrees of freedom are

ρ̇+∇jρ vj = 0 (8.16)

φ̇+ vj∇jφ+ ρ−1∇i

(
ρφ(1− φ)wi + j

(1)
i

)
= 0 (8.17)

ε̇+∇j(ε+ p)vj +∇ij
(ε)
i = 0 (8.18)

σ̇ +∇j(σvj + j
(σ,rev)
i + j

(σ,dis)
i ) = R/T (8.19)

ẇi + vj∇jwi +∇iΠ +X
(rev)
i +X

(dis)
i = 0 (8.20)

ġi +∇jgivj +∇ip+∇j

(
−Φij + ΦjkUik

+ΦikUjk + σ
(rev)
ij + σ

(dis)
ij

)
= 0 (8.21)

U̇ij + vk∇kUij + Ukj∇ivk + Uki∇jvk

−Aij + Z
(rev)
ij + Z

(dis)
ij = 0 (8.22)

the �rst 5 equations have the same form as before
(but di�erent phenomenological currents, see below).
In the dynamic equation for the strain (8.22) there
are nonlinear couplings to the velocity gradient that
have the form of the so-called lower convected deriva-
tive [34, 35] and the appropriate counter terms show
up in the stress tensor as additions to the phenomeno-
logical parts. In all dynamic equations the convective
velocity chosen is the mean velocity v, since this al-
lows a simple and thermodynamically consistent way
of writing the equations. However, as in the case dis-
cussed previously there are phenomenological terms in
the reversible currents that allow a di�erent choice of
the convective velocities (see below).

8.4 Currents

Following the previous development, we can estab-
lish the reversible and dissipative currents, and their
constraints.

For the phenomenological parts of the currents
there is the condition

R = −j (σ,∗)
i ∇iT + Π ∇ij

(1)
i − σ

(∗)
ij ∇jvi + ΦijZ

(∗)
ij

+miX
(∗)
i ≥ 0 (8.23)

with the equal sign (> sign) for ∗ = rev (∗ = dis),
respectively.

The dissipative parts of the currents introduced
above can again be deduced from a dissipation func-
tion that reads in bilinear approximation

2R =κ(∇T )2 +D(∇Π)2 + 2D(T )(∇T ) · (∇Π)
+ ξ′m2 + ζijklΦijΦkl + ξijklmn(∇iΦjk)(∇lΦmn)

+ νijkl(∇jvi)(∇lvk) + ν
(w)
ijkl (∇jmi)(∇lmk)

+ ν
(c)
ijkl ((∇jvi)(∇lmk) + (∇jmi)(∇lvk)) (8.24)
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where all 4-rank material tensors have the form νijkl =
νlδijδkl + (1/2)νtr(δikδjl + δilδjk − (2/3)δijδkl)) and
ξijklmn contains 4 parameters ξ1−4. In the ζ-tensor ζl
and ζtr are describing the relaxation of elastic strains
and the ξ1−4 give rise to vacancy di�usion as can be
seen in the following expressions

j
(σ,dis)
i = −(∂R)/(∂∇iT ) (8.25)

= −κ∇iT − ρ φ(1− φ) d (T )∇iΠ

Z
(dis)
ij = (∂R)/(∂Φij) (8.26)

= ζijklΦkl −∇k(ξkijlmn∇lΦmn)

σ
(dis)
ij = −(∂R)/(∂∇jvi) (8.27)

= −νijkl∇lvk − ν
(c)
ijkl∇lmk

X
(dis)
i = (∂R)/(∂mi) (8.28)

= ξ′mi −∇j

(
ν

(w)
ijkl ∇lwk + ν

(c)
ijkl∇lvk

)
j

(1,dis)
i = −(∂R)/(∂∇iΠ) (8.29)

= −ρ d∇iΠ− ρ φ(1− φ) d (T )∇iT

where di�usion and thermodi�usion is written in the
usual way withD = ρd andD(T ) = ρφ(1−φ)d(T ). For a
permanent network that does not relax, the relaxation
parameters vanish (ζl = ζtr = 0). For the reversible
parts of the currents we �nd

Z
(rev)
ij = λ(U)(∇imj +∇jmi)

+β7(Ukj∇imk + Uki∇jmk)
+β6mk∇kUij (8.30)

σ
(rev)
ij = 2β2mi wj (8.31)

X
(rev)
i = 2∇j(λ(U)Φij) + β∇iT + γ∇iΠ

−β6Φkj∇iUkj + β2 wj(∇jvi +∇ivj)
+∇jβ7(ΦkjUik + ΦkiUjk)
+β3mj(∇jwi −∇iwj)
+β4wj(∇jvi −∇ivj) (8.32)

j
(σ,rev)
i = β mi (8.33)

j
(1,rev)
i = γ mi (8.34)

8.5 Convection, Stress, and Concen-

tration Dynamics

As in the case of the 2-�uid nematics the velocities
which with the variables are convected can be tuned
by choosing special values for the coe�cients βn and γ.
E.g. for γ = 0 the densities ρ1,2 are convected with v1,2,
respectively (and the total density ρ and the concen-
tration φ with v and (1/ρ)(ρ2v1 +ρ1v2), respectively),
while for γ = −1 all 4 quantities are convected with v.
Similarly, for β4 = 1/2 = β2 and β3 = (1/ρ1)− (1/ρ2)
the momenta g1,2 are convected with v1,2 (and the to-
tal momentum g and the relative velocity w with v

and (1/ρ)(ρ2v1 + ρ1v2), respectively). For β6 = −1/ρ2

the strain Uij is convected with v2 and for β7 = −1/ρ2

the lower convected derivative contributions in (8.22)
e�ectively come with v2 (producing an additional cubic
term in (8.32) ∼ ∇iρ2, which can be neglected as other
cubic terms). Even the convection of the entropy can
be tuned by choosing β ≡ β0 +β00σ where β00 = 1/ρ1,
= 0, = −1/ρ2 leads to the convective velocity to be v1,
v, v2, respectively.

The distribution of the elastic stress among the two
�uids is governed by the coe�cient λ(U). For, respec-
tively, 2λ(U) = 1/ρ2, = −1/ρ1, or = 0, the elastic stress
is carried by �uid 2, �uid 1, or is equally distributed
between them.

As in the case of 2-�uid nematics we can linearize
and Fourier transform the dynamic equations, thus
eliminating w from e.g. the concentration dynamics.
Neglecting fourth order gradient terms we get

iωφ− d eff∆Π− ρ1ρ2

ρ2
d(T ) eff∆T − 2λ(φ)∇i∇jΦij = 0

(8.35)
with frequency dependent e�ective di�usion and
thermo-di�usion coe�cients

d eff = d+
ρ1ρ2

ρ2

(γ + 1)2

ρ ξ + iω
(8.36)

d (T ) eff = d (T ) +
β(γ + 1)
ρ ξ + iω

(8.37)

and the dynamic coupling to the elastic degree of free-
dom by

λ(φ) =
ρ1ρ2

ρ
λ(U) 1 + γ

ρξ + iω
(8.38)

Again these possible additions to the concentration dy-
namics, however, depend on the choices for the convec-
tion velocities as well as on the way how the nematic
stress has been divided among the two �uids. Assuming
the densities ρ1,2 to be convected with the mean veloc-
ity v (implying γ = −1) the additional contributions
to di�usion and thermo-di�usion are all zero as well
as the coupling to the nematic director. On the other
hand, for ρ1,2 to be convected with v1,2 respectively
(e.g. γ = 0), both, di�usion and thermo-di�usion show
a dispersion step around ω ≈ ρ ξ. For the elastic stress
division among �uid 1 and 2 according to the ratio
ρ1/ρ2 (implying λ(U)

1 = 0) there is no dynamic in�u-
ence of the elastic degree of freedom on the concentra-
tion, while for any other choice there is one. In partic-
ular, if only �uid 2 carries elastic stress (λ(U)

1 = 1/ρ2),
this dynamic coupling is given by λ(φ) = ρ1/ρ

2ξ for
strong friction (ρξ � ω).
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8.6 Simpli�ed elastomeric two-�uid

equations

In the preceding sections we have derived the most
general and complete set of 2-�uid equations. These
equations are for most purposes unnecessarily compli-
cated and can be simpli�ed using reasonable assump-
tions. Starting from the correct general equations such
assumptions, clearly spelled out, lead to controlled ap-
proximations and to a set of 2-�uid equations, whose
limitations and implicit assumptions are clear and well
de�ned in contrast to most ad-hoc approaches.

Here we want to display explicitly 2-�uid hydrody-
namics under the following assumptions,
a) convection with natural velocities (for Uij , g2, ρ2

and g1, ρ1 this is v2 and v1, respectively, or explicitly
β7 = −ρ−1

2 = β6, β2 = β4 = 1/2, β3 = ρ−1
1 − ρ−1

2 ,
γ = 0);
b) the linearized elastic force acts on the elastomeric
�uid (index 2) only (i.e. 2λ(U) = ρ−1

2 );
c) global incompressibility, δρ = 0 (i.e. δρ1 = −δρ2);
d) linearizing the phenomenological dissipative cur-
rents, but keeping quadratic nonlinearities otherwise.

Then the following set of equations is obtained:
The incompressibility condition (in 3 equivalent ver-
sions)

0 = div v (8.39)
0 = w ·∇ρ1 + ρ1div v1 + ρ2div v2 (8.40)
0 = w ·∇φ+ φdiv(1− φ)w − (1− φ) divφw (8.41)

the concentration dynamics (in 3 equivalent versions)

φ̇+∇i (φvi + φ(1− φ)wi)− dij∇i∇j(µ1 − µ̄2)

−φ(1− φ)d (T )
ij ∇j∇iT = 0 (8.42)

ρ̇1 + v1 ·∇ρ1 + ρ1divv1 − ρ dij∇i∇j(µ1 − µ̄2)

−ρ1ρ2

ρ
d

(T )
ij ∇i∇jT = 0 (8.43)

ρ̇2 + v2 ·∇ρ2 + ρ2divv2 + ρ dij∇i∇j(µ1 − µ̄2)

+
ρ1ρ2

ρ
d

(T )
ij ∇i∇jT = 0 (8.44)

the entropy dynamics (heat conduction equation)

σ̇ + vi∇iσ +
β

ρ
∇i(ρ1ρ2wi)− κij∇i∇jT

−ρ1ρ2

ρ
d

(T )
ij ∇i∇j(µ1 − µ̄2) = 0 (8.45)

the elasticity dynamics

U̇ij + v
(2)
k ∇kUij −

1
2
(∇jv

(2)
i +∇iv

(2)
j )

−ρ1

2
(wi∇j + wj∇i) ln

ρ2

ρ
+ Uki∇jv

(2)
k

+Ukj∇iv
(2)
k + ζlδijΦkk

+ζtr(Φij −
1
3
δijΦkk)− ξ1δij∆Φkk

−ξ2∆Φij − ξ3(∇i∇jΦkk + δij∇k∇lΦkl)
−ξ4(∇i∇kΦjk +∇j∇kΦik) = 0 (8.46)

There are nonlinear couplings to the concentration
variable (the cubic one has been suppressed), which
are not possible in a 1-�uid description.
For the momentum balance of the two di�erent species
we get

ρ1v̇
(1)
i + ρ1v

(1)
j ∇jv

(1)
i +

ρ1

ρ
∇i(p+

1
2
ρ2(v2

1 − v2
2))

+
ρ1ρ2

ρ
∇i(µ1 − µ̄2) +

ρ1

ρ
Φkj∇iUkj

−ρ1

ρ
Φij∇j ln

ρ2

ρ
+
ρ1ρ2

ρ
β∇iT + ξijρ1ρ2wj

−ν (1)
ijkl∇j∇lv

(1)
k − ν

(12)
ijkl ∇j∇lv

(2)
k = 0 (8.47)

ρ2v̇
(2)
i + ρ2v

(2)
j ∇jv

(2)
i +

ρ2

ρ
∇i(p−

1
2
ρ1(v2

1 − v2
2))

−ρ1ρ2

ρ
∇i(µ1 − µ̄2)−

ρ1

ρ
Φkj∇iUkj

+
ρ1

ρ
Φij∇j ln

ρ2

ρ
− ρ1ρ2

ρ
β∇iT −∇jΦij

+∇j(ΦjkUik + ΦikUjk)− ξijρ1ρ2wj

−ν (2)
ijkl∇j∇lv

(2)
k − ν

(12)
ijkl ∇j∇lv

(1)
k = 0 (8.48)

Note that although we made the approximation that
the linear elastic stress does only act on �uid 2, there
are inevitably nonlinear contributions to �uid 1, too.
There is also a (nonlinear) coupling of �uid 1 to the
concentration, if elastic distortions are present.

The di�erent approximations for the viscosities are
discussed in the Appendix.

In order to facilitate actual calculations we also give
eqs.(8.47,8.48) as dynamic equations for the total mo-
mentum and for the relative velocity

ρv̇i +∇ip+∇j

(
ρvivj +

ρ1ρ2

ρ
wiwj

)
−∇jΦij

+2∇j(ΦjkUik)− νijkl∇j∇lvk

−ρ1ρ2

ρ
ν

(c)
ijkl∇j∇lwk = 0 (8.49)

ẇi +
(
vj +

ρ2 − ρ1

ρ
wj

)
∇jwi + ρξijwj

+∇i

(
µ1 − µ̄2 + v · w +

ρ2 − ρ1

2ρ
w2

)
+∇j

1
ρ2

Φij

+
1
ρ2

Φkj∇iUkj −
2
ρ2
∇j(ΦkjUik)

−ρ1ρ2

ρ
ν

(m)
ijkl∇l∇jwk − ν

(c)
ijkl∇j∇lvk = 0 (8.50)

In order to conserve the global incompressibility
condition for all times, i.e. divv̇ = 0, the pressure has
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to ful�ll the relation

∆p = −∇i∇j (ρ1v
(1)
i v

(1)
j + ρ2v

(2)
i v

(2)
j ) +∇i∇jΦij

−∇i∇j (ΦkjUik + ΦikUjk) + νijkl∇i∇j∇lvk

+ρ1ρ2ρ
−1ν

(c)
ijkl∇i∇j∇lwk (8.51)

In contrast to 1-�uid descriptions for simple �uids,
where the incompressibility condition leads to a con-
siderable mathematical simpli�cation, this is no longer
the case for a 2-�uid description due the complicated
form of (8.51), even if incompressibility is a very good
approximation in physical terms. In particular, ∆p is
not only connected to compressions (Ukk), but also to
shear deformations, even in linear order.

Of the statics (8.7�8.12) only the following equa-
tions remain

δT = TC−1
V δσ + α−1

φ δφ+ α−1
3 Ukk (8.52)

Φkk = clUkk + α−1
3 δσ + ρ−1κ−1

u δφ (8.53)
δ(µ1 − µ̄2) = ρ−1κ−1

φ δφ+ ρ−1α−1
φ δσ

+κ−1
u Ukk (8.54)

with δφ = ρ−1δρ1 = −ρ−1δρ2, while eq.(8.13) remains
unchanged. Note that δµ is not needed, but follows
from δp via eq. (8.5).

9 Discussion

Within the general framework of hydrodynamics
and thermodynamics we have set up a consistent non-
linear 2-�uid description of complex �uids, in partic-
ular for lyotropic nematic liquid crystals and polymer
solutions or swollen elastomers. Such a general theo-
ry determines the frame for any ad-hoc model, which
has to be a special case of the general one. The com-
parison with the general theory also reveals implicit
and explicit assumptions, approximations and possible
generalizations of a given model. A simple or "natu-
ral"choice in a given model may not be mandatory,
but rather imply a presumption.

Quite generally we �nd that neither the velocity,
with which a certain variable is convected, nor the
stress division between the di�erent �uids can be de-
termined by general principles, but is rather system or
material dependent. On the other hand, there are cer-
tain restrictions and interrelations among the convec-
tive velocities and other physical e�ects that limit the
possible choices. For the two densities ρ1, ρ2 e.g., the
natural choice for the convection velocities seems to be
their native velocities v1 and v2, respectively. This im-
plies that the total density is convected with the mean
velocity v (as required by mass transport), while the
concentration φ is convected with (1/ρ)(ρ2v1 + ρ1v2).
Another obvious choice would be the mean velocity as

convection velocity for both, the total density as well
as the concentration implying that also ρ1 and ρ2 are
convected with v. However, the actual convection ve-
locity depends on the value of the material dependent
(reactive) �ow parameters γ⊥ and γ ‖, de�ned in eq.
(5.11).

For the nematic degree of freedom the convective
velocity again depends on a material parameter (β1

de�ned in eq.(5.7)) and is not necessarily equal to v2

(if �uid 2 is the nematogen). However, the value of β1

in�uences also the �ow alignment of the director (and
the back �ow due to director reorientation), which can
be measured in shear �ow experiments. In the case of
visco-elastic and elastic media, which are described by
a dynamic equation for the (Eulerian) strain tensor Uij ,
there are two velocities involved. One is the usual con-
vection velocity (vk∇kUij) and the other one occurs in
the "lower convected"part (Ukj∇ivk+Uki∇jvk). There
is no fundamental reason for the two to be equal and
their actual value depends on the (reactive) �ow pa-
rameters β6 and β7, respectively, de�ned in eqs.(8.30,
8.32).

For the evolution equations of the momenta spe-
cial care has to be taken to get a description, which
is compatible with general laws (cf. Chapter 6). The
currents and quasi-currents that enter the description
in terms of either the total momentum and the velocity
di�erence or the two individual momenta are not the
same as seen in eqs.(6.4, 6.5). In the nematic case the
stress division problem depends on the �ow alignment
parameters as well as on the convection velocity of the
director, while in the visco-elastic case the crucial ma-
terial parameter λ(U), eq.(8.30,8.32), is not related to
a convective velocity. The delicate question of viscosi-
ties, and approximations related to them, is discussed
in detail in the appendix.

A prominent feature of the 2-�uid description is the
coupling of the concentration dynamics to the veloci-
ty di�erence. This leads to a frequency dependent ef-
fective di�usion and thermo-di�usion, as well as a fre-
quency dependent coupling to the nematic or the visco-
elastic degree of freedom. For low frequencies these con-
tributions to the concentration dynamics constitute ad-
ditional dissipation channels, while for the short-time
dynamics (below the relaxation time of the velocity
di�erence) they are reactive.

Recently, 2-�uid descriptions of di�usion in poly-
meric systems have been given [36, 37] based on the
GENERIC approach making use of Poisson brackets.
A detailed comparison with these formulations is be-
yond the scope of this manuscript and will be discussed
elsewhere.
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Appendix

In this Appendix we discuss viscosity and viscosity-
like phenomena in the 2-�uid hydrodynamics. We show
that in order to get the 1-�uid limit (the binary liquid)
correctly, some care has to be taken when the usual
approximations are made.

If there is only one velocity present, the vis-
cous contribution to the dissipation function is
νijkl(∇jvi)(∇lvk) with νijkl = νjikl = νijlk = νklij ,
which ensures that only symmetric velocity gradients
contribute to dissipation. Antisymmetric velocity gra-
dients, curlv, describe rotations. A solid body rota-
tion (curlv = const.), however must not increase the
entropy and (curlv)2 contributions are not allowed in
the dissipation function. With these symmetries the
viscosity tensor has 2 coe�cients for the isotropic

νijkl = ν(δjlδik + δilδjk −
2
3
δijδkl) + ζδijδkl (A.1)

and 5 for the nematic case

νijkl = ν2 (δjlδik + δilδjk) + (ν4 − ν2) δijδkl

+ 2(ν1 + ν2 − 2ν3)ninjnknl

+ (ν5 − ν4 + ν2)(δijnknl + δklninj)
+ (ν3 − ν2)(njnlδik + njnkδil

+ninkδjl + ninlδjk) (A.2)

In a 2-�uid description the same restrictions hold with
respect to the mean velocity v, since it is the conju-
gate to the momentum density and curlv = const.
still describes solid body rotations. There are no such
restrictions to the relative velocity w, and curlm can
contribute to the dissipation. The most general form for
viscous dissipation in a 2-�uid description thus reads

2R(vis) = νijkl(∇jvi)(∇lvk)

+ 2ν (c)
ijkl(∇jvi)(∇lmk)

+ ν
(w)
ijkl (∇jmi)(∇lmk)

+ ν
(r)
ij (curlm)i(curl m)j

+ 2ν (d)
ijk (curlm)i∇jvk

+ 2ν (e)
ijk (curl m)i∇jmk (A.3)

Note that only νijkl has the dimension of a viscosi-
ty, while ν (c)

ijkl and ν
(d)
ijk are kinematic viscosities, while

ν
(w)
ijkl , ν

(e)
ijk, and ν

(r)
ij are viscosities divided by ρ2. The

tensors ν and ν (w) have the familiar form (A.1) or
(A.2). For ν (c) there is no a-priori reason for a ν (c)

ijkl =

ν
(c)
klij symmetry, since v and m are not equivalent. How-
ever, as will be seen below, a consistent 2-�uid descrip-
tion is only possible, if this symmetry holds and ν (c)

ijkl

has the form (A.1) or (A.2).5 The tensor ν (r)
ij = ν(r)δij

or ν (r)
ij = ν

(r)
1 δij + ν

(r)
2 ninj contains 1 or 2 coe�-

cients in the isotropic and nematic case, respectively.
The 3rd rank material tensors, symmetric in the last
two indices ν (d,e)

ijk = ν
(d,e)
ikj are zero in the isotropic

case and both carry one coe�cient in the nematic case
ν

(d,e)
ijk = ν(d,e)(εiklnjnl + εjklninl). For the dissipative
currents this leads to

σ
(dis)
ij = −νijkl∇lvk − ν

(c)
ijkl∇lmk

−ν(d)
kji(curl m)k (A.4)

X
(dis)
i = ξ′ij mj −∇j

(
ν

(w)
ijkl ∇lmk + ν

(c)
klij ∇lvk

+ν(r)
kl εkji(curlm)l + ν

(d)
lpkεlji∇pvk

+ν(e)
lpkεlji∇pmk + ν

(e)
kji(curl m)k

)
(A.5)

Since there is already friction ∼ mi, very often the
viscosity-like dissipation ∼ ∇jmi is neglected altogeth-
er (ν(c) = ν(d) = ν(e) = ν(w) = ν(r) = 0). Such an ap-
proximation leads to (5.3,5.4). In the strong coupling
limit, where w (and m) vanish, this approximation
seems to be appropriate and it correctly gives the 1-
�uid limit of binary mixtures. On the other hand, for
two �uids only gently coupled there is no a-priori rea-
son, why e.g. the tensor ν(c) (or ν(w)) should be neglect-
ed compared to ν, since both terms contain gradients
of v1 as well as of v2. Indeed, the dissipation function
in terms of v1,2 reads

2R(vis) = ν
(1)
ijkl(∇jv

(1)
i )(∇lv

(1)
k )

+ 2ν (12)
ijkl (∇jv

(1)
i )(∇lv

(2)
k )

+ ν
(2)
ijkl(∇jv

(2)
i )(∇lv

(2)
k )

+
ρ2
1ρ

2
2

ρ2
ν

(r)
ij (curl [v1 − v2])i(curl [v1 − v2])j

+ 2
ρ1ρ2

ρ
(curl [v1 − v2])i

(ν(d1)
ijk ∇jv

(1)
k + ν

(d2)
ijk ∇jv

(2)
k ) (A.6)

where curlv is absent in the dissipation function.
Comparing (A.3) and (A.6) in harmonic approxima-
tion, i.e. neglecting cubic and quartic terms involv-
ing e.g. (curl v1)iv

(1)
k ∇jρ1, (v1 × ∇ρ1)iv

(1)
k ∇jρ1, or

5Without this symmetry the form (A.1) still applies for the isotropic case, while in the nematic case an additional coe�cient is
present, i.e. the term ν5(ninjδkl + nknlδij) in (A.2) splits into two di�erent parts, ν5aninjδkl + ν5bnknlδij .
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v
(1)
i (∇jρ1)(∇lv

(1)
k ), v(1)

i v
(1)
k (∇jρ1)(∇lρ1), we get

ν(d1) = ρ1ν
(d) + ρ1ρ2ν

(e) (A.7)
ν(d2) = ρ2ν

(d) − ρ1ρ2ν
(e) (A.8)

ρ2ν
(1)
ijkl = ρ2

1νijkl + 2ρ2
1ρ2ν

(c)
ijkl + ρ2

1ρ
2
2ν

(w)
ijkl (A.9)

ρ2ν
(2)
ijkl = ρ2

2νijkl − 2ρ2
2ρ1ν

(c)
ijkl + ρ2

1ρ
2
2ν

(w)
ijkl (A.10)

ρ2ν
(12)
ijkl = ρ1ρ2νijkl + ρ1ρ2(ρ2ν

(c)
klij − ρ1ν

(c)
ijkl)

−ρ2
1ρ

2
2ν

(w)
ijkl (A.11)

Again there is no a-priori reason for ν(12)
ijkl = ν

(12)
klij . How-

ever, since the tensors ν, ν(w), ν(1), and ν(2) do have
this symmetry, eqs.(A.9,A.10) force ν(c) to have it, and
�nally (A.11) requires also ν(12) to have this symmetry
and thus to be of the form (A.1,A.2).

Neglecting the curl-terms means the same in both
descriptions (A.3) and (A.6), i.e. ν(r) = ν(d) =
ν(d1) = ν(d2) = 0. For the symmetric velocity gradi-
ent terms the approximation ν(c) = ν(w) = 0 used
in (5.4,5.5) (i.e. no ∇imj-terms in (A.3)) leads to
ρ2
2ν

(1) = ρ2
1ν

(2) = 1
2ρ1ρ2ν

(12) leaving only one viscous
tensor independent. Neglecting only the cross-viscosity
ν(c) in (A.3) does not imply the cross-viscosity in (A.6)
to vanish, since ν(c) = 0 gives ρν(12) = ρ2ν

(1) + ρ1ν
(2).

The opposite case ν(12) = 0 used in (7.9,7.10) leads to a
non-zero ρ1ρ2ν

(c) = ρ2ν
(1)−ρ1ν

(2) (and ν = ν(1)+ν(2),
ν(w) = ρ−2

1 ν(1) + ρ−2
2 ν(2)). Thus, the approximations

leading to (5.4,5.5) are not compatible to those used in
(7.9,7.10). In the general case (A.6) leads to the follow-
ing viscous contributions to the left hand sides of (7.9)
and (7.10), respectively

−ν(1)
ijkl∇j∇lv

(1)
k − ν

(12)
ijkl∇j∇lv

(2)
k (A.12)

−ρ1ρ2

ρ
ν

(d1)
kij ∇j(curl [v1 − v2])k

−ρ
2
1ρ

2
2

ρ2
ν

(r)
kl εkji∇j(curl [v1 − v2])l

−ρ1ρ2

ρ
εlji∇j

(
ν

(d1)
lpk ∇pv

(1)
k + ν

(d2)
lpk ∇pv

(2)
k

)
and

−ν(2)
ijkl∇j∇lv

(2)
k − ν

(12)
klij∇j∇lv

(1)
k (A.13)

−ρ1ρ2

ρ
ν

(d2)
kij ∇j(curl [v1 − v2])k

+
ρ2
1ρ

2
2

ρ2
ν

(r)
kl εkji∇j(curl [v1 − v2])l

+
ρ1ρ2

ρ
εlji∇j

(
ν

(d1)
lpk ∇pv

(1)
k + ν

(d2)
lpk ∇pv

(2)
k

)
In the 1-�uid limit ν(d1,d2) have to vanish and ρ(ν(1) +
ν(12)) → ρ1ν and ρ(ν(2) + ν(12)) → ρ2ν, which is ob-
tained for vanishing ν(w) and ν(c).
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