Fluid Biaxial Banana Smectics: Symmetry at Work

P. E. Cladis ${ }^{1}$, H. R. Brand ${ }^{2}$ and H. Pleiner ${ }^{3}$

${ }^{1}$ Advanced Liquid Crystal
Technologies, POB 1314, Summit, NJ 07902, USA
${ }^{2}$ Theoretical Physics III, University of Bayreuth, 95440 Bayreuth, Germany
${ }^{3}$ Max-Planck-Institute for Polymer Research, 55021 Mainz, Germany

Perhaps one of the most surprising results in the past 10 years was the prediction of Brand et al. \{1\} that fluid biaxial smectics made from compounds without asymmetric carbons could, by symmetry, have a spontaneous polarization, \mathbf{P}, in the layer plane. They called this construct, which can be either ferroelectric or antiferroelectric, smectic $\mathbf{C}_{\mathbf{p}}$. Advances gained from their prediction include the development of highly efficient electrets for broad-band telecommunications
$\{2,3\}$ as well as a basic nonlinear model \{4\} for TLAFs, thresholdless antiferroelectrics \{5\}, now seen in beautiful, CMOS compatible, active matrix liquid crystal displays \{6\} (figure 1).
Fluid biaxial smectics made from compounds without asymmetric as in the lower right [6]. Courtesy T.Yoshida: tyoshida@drd.hlb.casio.co.jp

In this issue:

Fluid Biaxial Banana Smectics - Cladis
Rhapsody in Blue
New Editorial Team for Liquid Crystals Today
Notices - Y2K Multimedia Prize14

New Products - Kent Displays
People in the News15
Meeting Report - ISMM 16
Meeting Report -Pattern Formation17
Notices - LLC 2000 18
New Products - From Stanford Res 18
Meeting Report - OLC99 19
Forthcoming Meetings 20

Figure 1. Casio's 2.5 -inch diagonal 832×230 active matrix TLAF prototype. The drive voltage is $\pm 2.5 \mathrm{~V}$; time to scan one line, $60 \mu \mathrm{~s}$; and contrast ratio over 300 . The upper right is a front view. The other images show no grey scale inversion nor colour change even when the viewing angle is
carbons but nevertheless with a spontaneous polarization, \mathbf{P}, are now known as banana smectics because of their molecular shape [7-19]. How their symmetry changes under parity ($\mathbf{r} \rightarrow-\mathbf{r}$) is an efficient way to summarize and differentiate their electrooptic properties [1, 16-19].

Typical of fluid biaxial smectics, there are a large number of stacking options endowing banana smectics with opto-electric properties spanning an extremely broad range of economically viable applications. 'Value-added features' of some banana smectics include: (a) a faster electro-optic response than liquid crystals with a helix structure; (b) their steric property allowing possible rotations about an axis in a layer plane with minimal changes
in the smectic layer spacing; and (c) ambidextrous chirality.

Thermotropic smectic phases are layered structures with layer spacing on the order of $30-100 \AA$. When the in-plane fluidity is isotropic, we have the well-known smectic A phase. When the in-plane fluidity is anisotropic, we can have the equally well-known smectic C phase. Both smectics C and A are dielectrics. The consequence is that while their 'turnon' response in an electric field can be fast (because they are 2D fluids), the absence of a spontaneous polarization, \mathbf{P}, means that their 'turn-off' response is relatively slow (elastic relaxation).

For fluid biaxial smectic liquid crystals composed of molecules with at least one asymmetric carbon, the
macroscopic expression of chirality is spontaneous twist, a helix structure with a hand and wavenumber $q_{0}=$ $2 \pi / p_{0} . p_{0}$ is the helix pitch. If q_{0} describes a right-handed helix, then, $-q_{0}$ describes a left-handed one. As the mirror image of a right-hand is a left-hand, under parity, $q_{0} \rightarrow-q_{0}$. q_{0} is a pseudo-scalar.
This property allows scalar invariants (S) in the free energy density expansion in gradients of the director, \mathbf{n}, where $\mathbf{n}^{2}=1$, for cholesterics and helielectrics such as smectic C* [20] of the form:

$$
S_{0}=q_{o} n \cdot \text { curl } n \neq 0
$$

to account for spontaneous helix formation. For, under parity, $q_{0} \rightarrow-q_{0}$ and $n \bullet$ curl $\boldsymbol{n} \rightarrow-$ n•curl n. While each have an odd number of

Subscription Information

Liquid Crystals Today is published quarterly by Taylor \& Francis Ltd, 11 New Fetter Lane, London EC4P 4EE, UK.
For a complete and up-to-date guide to Taylor \& Francis Group's journals and books publishing programmes, and details on advertising in our journals, visit our web site: http: //www. tandf. co.uk
Periodical postage paid at Jamaica, New York 11431. US Postmaster: Send address changes to Liquid Crystals Today, Publications Expediting Inc., 200 Meacham Avenue, Elmont, New York 11003. Air freight and mailing in the USA by Publications Expediting Inc., 200 Meacham Avenue, Elmont, New York 11003.
Dollar rates apply to subscribers in all countries except the UK and the Republic of Ireland where the pound sterling price applies. All subscriptions are payable in advance and all rates include postage. Journals are sent by air to the USA, Canada, Mexico, India, Japan and Australasia. Subscriptions are entered on an annual basis, i.e., January to December. Payment may be made by sterling cheque, dollar cheque, international money order, National Giro, or credit card (Amex, Visa, Mastercard).
Orders originating in the following territories should be sent direct to the local distributor. India: Universal Subscription Agency Pvt. Ltd, 101-102 Community Centre, Malviya Nagar Extn, Post Bag No. 8 Saket, New Delhi 110017. Japan: Kinokuniya Company Ltd, Journal Department, PO Box 55 Chitose, Tokyo 156. USA, Canada and Mexico: Taylor \& Francis Inc., 325 Chestnut Street, 8th Floor, Philadelphia, PA 19106. UK and all other territories: Taylor \& Francis Ltd, Rankine Road, Basingstoke, Hampshire RG24 8PR.
The print edition of this journal is typeset by Fox Design, and printed on ANSI conforming acid free paper by The Charlesworth Group. The on-line edition of this journal is hosted by Catchword.

Disclaimer

The contents of Liquid Crystals Today do not necessarily represent the views or policies of the ILCS. Publication of items in Liquid Crystals Today does not imply endorsement of any views or statements or products/ services advertised by either the Editor or the ILCS.

Instructions for Contributors/Authors

Preparation of material

1. Contributions should be submitted on disk (1 ASCl file and 1 word processing file as used by author), along with 1 paper hard copy using double-line spacing, single sided on A4 paper, with margins top and bottom, and left-hand side of at least 4 cm .
2. Articles must contain suitable headings and sub-headings.
3. References should be numbered serially in the text by means of superscript Arabic numerals.
4. Bibliographic references (not footnotes) should follow the main text and should have the format:
REDMOND, M., COLES, H., WISCHERHOFF, E., and ZENTEL, R., 1993, Ferroelectrics, 148, 323.
BAUR, G., DELAVIER, P., ETZBACH, K.H. MEYER, F., KIEFER, R. SIEMENSMEYER, K., and WAGENBLAST, G., 1994, Abstracts of 15th International Liquid Crystals Conference, Budapest, Hungary, p. 780.
5. Journal titles should be abbreviated according to the Chemical Abstracts Service Source Index (CASSI).
6. Tables should be typed on separate sheets at the end of the manuscript.
7. Diagrams should be accompanied by a separate list with captions. Original artwork to be supplied wherever possible. Colour photographs will be accepted subject to approval.

Copyright ' 1999 Taylor \& Francis Limited. All rights reserved. No part of this publication may be reproduced, stored, transmitted, or disseminated, in any form, or by any means, without prior written permission from Taylor \& Francis Limited, to whom all requests to reproduce copyright material should be directed, in writing. Taylor \& Francis Limited grants authorization for individuals to photocopy copyright material for private research use, on the sole basis that requests for such use are referred directly to the requestor's local Reproduction Rights Organization (RRO). In order to contact your local RRO, please contact: International Federation of Repreoduction Rights Organisations (IFRRO), rue de Prince Royal, 87, B-1050 Brussels, Belgium, email ifro@skynet.be; Copyright Clearance Center Inc., 222 Rosewood Drive, Danvers, MA 01923, USA, e-mail info@copyright.com; Copyright Licensing Agency, 90 Tottenham Court Road, London W1P OLP, UK, e-mail cla@da.co.uk. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
negative signs, their product, $q_{0} n \bullet c u r l n$, has an even number, meaning S_{0} is conserved under parity.
q_{0} is a bulk property that controls the electro-optic response times ('a little bit too slow for video-rate') of displays made from cholesterics (e.g. STN displays) and smectic C* (e.g. SSFLCs).

Here, in the light of parity, we give a synopsis of biaxial fluid smectic phases with no polar vectors and those with one or two polar vectors [19]. Recent more complete accounts of the physical properties, scalar invariants and phase transitions of fluid biaxial smectics can be found in [16-18].

Planks on planes: no polar vectors

A natural model for fluid biaxial smectics with no polarization vectors
is provided by situating an array of planks on layers. When the planks are inclined so that one of their axes is at an angle to the layer normal, we have a smectic C phase with $\mathrm{C}_{2 h}$ symmetry (figure 2(a), top). With two axes inclined to the layer normal we have smectic C_{T} with C_{i} symmetry. Smectic C_{T} has no mirror planes nor two-fold axes, but it does have inversion ($\mathbf{r} \rightarrow-\mathbf{r}$) symmetry (figure 2(a), bottom).
While symmetry distinguishes smectic C_{T} from C, they are not so easy to tell apart in the polarizing microscope. However, smectic C* and C_{T}^{*} have quite different electrooptic properties.

Locally C* has C_{2} symmetry with its spontaneous polarization vector, P, in the plane of the layers. Because C* is chiral (has a hand), it has globally D_{∞} symmetry. Smectic C^{*} is helielectric [20].

Figure 2. (a) Smectic C (top) and smectic C_{T} (bottom). (b) Antiferroelectric with two layers CA alternating with two layers $C^{*}[4]$. Eight layer \mathbf{P} modulation on right. $\mathrm{O}: \mathbf{P}$ "in" and $\bullet: \mathbf{P}$ "out".

In contrast, smectic C_{T}^{*} has locally C_{1} and globally C_{∞} symmetry. As a result, its polarization vector, \mathbf{P}, is at an angle to the smectic layers. In its simplest stacking, C_{T}^{*} is helielectric in the plane of its layers and ferroelectric perpendicular to them (conical helielectric).
As ferroelectrics are always pyroelectric, a change in temperature results in a change in \mathbf{P}. For example, locally heating C_{T}^{*} could result in a rotation of \mathbf{P} to be more (or less) perpendicular to the layers. The resulting change in intensity of electric fields, e.g. perpendicular to the smectic planes, can then be detected and used to convert a heat signal to an electric signal.
An example where this may be useful is for the conversion of an infrared optical signal carried by a fibre optic element to an electric signal carried by copper wires. In the telecommunications industry, inexpensive opto-electric transducers are needed to bring broad band information carried by optical fibres to buildings wired for electricity. While smectic C_{T}^{*} can do the job, its helix structure tends to slow its response.
In addition, rotating plank-shaped molecules so that \mathbf{P} is perpendicular to the layers (say), forces a change in the layer spacing. In a worst case scenario, such rotations will irreversibly destabilize flat layer structures thereby reducing the useful lifetime of C_{T}^{*} as an optoelectric transducer. It is conceivable that this particular limitation posed by 'planks on planes' can be finessed by banana smectics.

Antihelielectric planks on planes

Stacking chiral C-type planks in pairs with opposite \mathbf{P} on neighbouring layers, results in antiferroelectric liquid crystals called smectic

Figure 3. Minimal banana smectics.
$C_{A}[21,22]$. This type of stacking is correlated with a large tilt angle for the planks [22].

In smectic C_{A}, when \mathbf{P} is modulated over two layers, its threshold
field is large [4]. It has been shown [5], however, that the threshold field can be reduced to within the range of CMOS compatible drive electronics by mixing C_{A} with C^{*}. This

Table 1. After [16].

Class	Symmetry	Electro-optics	Helix
C	$C_{2 h}$	dielectric	no
C_{P}	$C_{2 v}$	ferroelectric or ferrielectric $\mathbf{P}=\left(P_{x}, 0,0\right)$	no
$C_{P^{\prime}}$	$C_{2 v}$	ferroelectric or ferrielectric $\mathbf{P}=\left(0,0, P_{z}\right)$	no
$C_{B 2}$	C_{2}	ferroelectric or ferrielectric $\mathbf{P}=\left(P_{x}, 0,0\right)$	yes
$C_{B 1}$	$C_{1 h}$	ferroelectric or ferrielectric $\mathbf{P}=\left(P_{x}, 0, P_{z}\right)$	no
C_{G}	C_{1}	ferroelectric or ferrielectric $\mathbf{P}=\left(P_{x}, P_{y}, P_{z}\right)$	yes

has led to antiferroelectric displays called TLAFs [6]. TLAFs have antiferroelectric liquid crystal hallmarks: a wide isotropic viewing angle (figure 1) and fast 'turn-off response' [22, 23]. In the light of one model [4] where the threshold field is zero for a $\sim 50 \%$ C*/CA mixture, this is interpreted as a \mathbf{P} modulation over more than two layers (figure 2(b)).

Minimal banana smectics: one polar vector

Banana smectics are a new avenue to develop smart materials from fluid biaxial smectics [1, 16-19]. Figure 3 shows the minimal banana smectic phases which have one polarization vector, \mathbf{P} || m, even when composed of molecules with no asymmetric carbons. We call them 'minimal banana smectics' to distinguish them from the 'peelable bananas' or dolphin smectics which have two polar vectors [17, 18]. The reference frame attached to the minimal bananas in figure 3 is $[\mathbf{I}, \mathbf{m}, \mathbf{n}$] with \mathbf{m} II \mathbf{P}. The layer normal is \mathbf{k}. Their properties are summarized in table 1 along with those of smectic C.

Smectic $\mathbf{C P}_{\mathbf{p}}$

In the case of smectic C_{p} [1], the banana has $\mathbf{n} \| \mathbf{k}$ and $\mathbf{m} \perp \mathbf{k} . \mathrm{C}_{\mathrm{p}}$ has vertical mirror planes and a 2-fold axis, i.e. $C_{2 v}$ symmetry. The 2-fold axis which lies in the mirror plane is $\mathbf{m} \| \mathbf{P} . C_{p}$ can be either ferroelectric or antiferroelectric depending upon how it is stacked.

The symmetry of C_{p} provides physical arguments for recent patents awarded to Deutsche Telekom [3] for highly efficient electrets made from smectic liquid crystal polymers and monomers composed of molecules without any asymmetric carbons. An external electric field uniformly orients \mathbf{P} in the plane of layers. The material is then cooled below the glass transition to 'freeze in' the

Figure 4. \quad Smectic C_{G} 's many 2-layer stackings.
'poled' state. The large pyroelectric properties of their material exclude it being a dielectric, such as smectics A or C which have no polarization vectors. The fact that their material has no asymmetric carbons excludes it from being smectic C^{*}. The fact that the large electric field can be stored indefinitely in the glassy state excludes the presence of free electrons in their electrets.

Smectic $\mathbf{C}_{\mathbf{p}}$,

In $C_{p^{\prime}}$, the bananas are oriented with their polar direction $\mathbf{P}\|\mathbf{m}\| \mathbf{k}$ [17-19]. Like smectic C_{p}, C_{p}, has vertical mirror planes and a 2 -fold axis, i.e. $C_{2 v}$ symmetry. The 2 -fold axis which lies in the mirror plane is m II P. Cp, can also be either ferroelectric or antiferroelectric depending upon how it is stacked. With no in-plane polarization, C_{p}, may have been observed in some highly symmetric bananas.

Smectic $\mathbf{C B}_{\text {B }}$

Rotating \mathbf{n} and \mathbf{I} in C_{p} around $\mathbf{m} \| \mathbf{P}$ removes all mirror planes giving rise to a chiral structure called smectic $C_{B 2}$ [16]. $C_{B 2}$ symmetry is unchanged
when $\mathbf{I} \rightarrow-\mathbf{I}$ and $\mathbf{n} \rightarrow-\mathbf{n}$ together. In contrast, C_{p} symmetry is invariant when $\mathbf{I} \rightarrow-\mathbf{I}$ and $\mathbf{n} \rightarrow-\mathbf{n}$ separately. A scalar invariant can then be constructed for $\mathrm{C}_{B 2}$ [17]:

$$
S_{2}=(\mathbf{I} \times \mathbf{n}) \bullet \text { curl } m \neq 0 .
$$

As $(\mathbf{I} \times \mathbf{n})$ can be either parallel or anti-parallel to m, S_{2} represents an ambidextrous helix. The spontaneous appearance of both left- and righthanded helices is possible in bulk smectic $C_{B 2}$.

Besides $S_{2} \neq 0$, smectic $C_{B 2}$ has two other twist scalar invariants [18]. Thus, while S_{2} is a scalar invariant in the free energy for smectic $C_{B 2}$, neither its hand nor the direction of its helix structure is fixed by symmetry.

Depending on stacking sequence one can obtain ferroelectricity, as well as antiferroelectricity without a helical structure; helielectric and antihelielectric structures without any net polarization and even more complex arrangements [17, 19]. Thus, while smectic $C_{B 2}$ has C_{2} symmetry in one layer, globally, its symmetry can be D_{∞}, similar to that of C^{*}, only e.g. when it makes a
simple helix structure and is in its simplest stacking.

Smectic $\mathbf{C}_{\text {B1 }}$

Some of the limitations of smectic $\mathrm{C}_{\mathrm{B} 2}$ may not be present in smectic $\mathrm{C}_{\mathrm{B} 1}$, where \mathbf{n} and \mathbf{m} are at an angle to $\mathbf{k}, \mathbf{I} \perp \mathbf{k}$ and $\mathbf{P} \| \mathbf{m}$ [16]. Smectic $C_{B 1}$ has a mirror plane (like C_{p}) but no symmetry axis and therefore $C_{1 h}$ symmetry. Its structure is not chiral (no helix) so its opto-electric properties are either ferroelectric or antiferroelectric with a potentially larger pyroelectric coefficient than smectic C_{p}. In this context, studies of $C_{P}\left(\right.$ or C_{P}) $\leftrightarrow C_{B 1}$ phase transitions would be helpful [18].

Smectic $\mathbf{C}_{\mathbf{G}}$

In smectic C_{G}, where G stands for 'general' [24], neither I, \boldsymbol{m} nor \boldsymbol{n} are zero or 90° to k . Smectic C_{G} is chiral, even when its molecular composition has no asymmetric carbons. As in the case of smectic $C_{B 2}$, neither the chirality nor the helical direction in smectic C_{G} is fixed by symmetry. A striking feature of smectic C_{G} is the number of ways it can stack just two of its layers (figure 4) [16].

Stacking ambidextrous bananas

The presence of both hands can result in a number of situations. The simplest is phase separated regions of left- and right-handed helices. One can also imagine a bilayer packing of left- and right-handed layers with no net hand or even interpenetrating left- and righthanded helices [19]. The options seem limitless. In any case, as $S_{2} \neq 0$, smectic $C_{B 2}$ is expected to be an ambidextrous helielectric or antihelielectric with pitch $p_{\circ} \sim 1-10 \mu \mathrm{~m}$.
Despite a macroscopic length scale $\left(p_{0}\right)$, the characteristic time associated with ambidextrous helielectric smectic $\mathrm{C}_{B 2}$ will likely be faster than C^{*} with
fewer defects [19]. The 'turn-off' time of ambidextrous antihelielectric $C_{B 2}$ may even be faster than that of C_{A}.

'Peelable bananas' and dolphins: two polar vectors

Orthogonal 'peelable banana' and dolphin smectics are denoted smectics $C_{Q^{\prime}}$ and C_{Q}, respectively $[17,18]$. Both have the same symmetry and two polar vectors one of which, m, is in the plane of the layers. They differ in that in smectic C_{Q}, the second polar vector (i.e. I) is also in the plane of the layers while in smectic C_{Q}, it is perpendicular to the layers (i.e. \mathbf{n}). Tilting C_{Q} always leads to a phase with C_{1} symmetry, called smectic $C_{D G}$, which is like C_{G} but with two polar vectors, m and I. Tilting smectic $C_{Q^{\prime}}$ about its polar axis m also leads to smectic $C_{D G}$. But, tilting $C_{Q^{\prime}}$ about its one non-polar axis, I, leads to a phase with $C_{1 h}$ symmetry called smectic $C_{D 1}$, like $C_{B 1}$ but with two polar vectors, n and m for 'peelable bananas'.

Acknowledgments

It is a pleasure for PEC to thank the organizers of the 7th International Conference on Ferroelectric Liquid Crystals and the Universität Bayreuth 'Graduiertenkolleg Nichtlineare Spektroskopie und Dynamik' of the Deutsche Forschungsgemeinschaft, for partial support of this work.

References

1 BRAND, H. R., CLADIS, P. E., and PLEINER, H., 1992,
Macromolecules, 25, 7223.
2 SOTO BUSTAMENTE, E. A., YABLONSKII, S. V., OSTROVSKII, B. I., BERESNEV, L. A., BLINOV, L. M., and HAASE, W., 1996, Liq. Cryst., 21, 829.
3 SOTO BUSTAMENTE, E. A., YABLONSKY, S. V., BERESNEV, L. A., BLINOV, L. M., HAASE, W.,

DULTZ W., and GALYAMETDINOV, Yu. G., 1995, Methode zur Herstellung von polymeren pyroelektrischen und piezoelektrischen Elementen, Deutsche Patent Anmeldung Nr. 19547934.3 vom 22.Dez; DE195 47934 A1, 26.6.97; EP 0780914 A1 25.6.97; JP 237921/907 9.9.97; US 5833 833, 10.11.98.
4 CLADIS, P. E., and BRAND, H. R., 1998, Ferroelectrics, 213, 63.

5 INUI, S., IIMURA,N., SUZUKI,T., IWANE, H., MIYACHI, K., TAKANISHI, Y., and FUKUDA, A., 1996, J. mater. Chem., 6, 671. 6 YOSHIDA, T., Proceedings of the 7th International Conference on Ferroelectric Liquid Crystals, to appear in Ferroelectrics.
7 See for example: DIELE, S., PELZL, G., and WEISSFLOG, W., 1999, Liq. Cryst. Today, 9, 8 and references therein.
8 PELZL, G., DIELE, S., and WEISSFLOG, W., 1999, Adv. Mater., 11, 707.
9 PELZL, G., DIELE, S., GRANDE, S., JAKLI, A., LISCHKA, Ch., KRESSE, H., SCHMALFUSS, H., WIRTH, I., and WEISSFLOG, W., 1999, Liq. Cryst., 26, 401.
10 MACDONALD, R., KENTISCHER, F., WARNICK, P., and HEPPKE, G., 1998, Phys. Rev. Lett., 81, 4408.
11 SEMMLER, K. J. K., DINGEMANS, T. J., SAMULSKI, E. T., 1998, Liq. Cryst., 24, 799.

12 SHEN, D., DIELE, S., WIRTH, I., and TSCHIERSKE, C., 1998, Chem. Commun., 1998, 2573.
13 SEKINE, T., NIORI, T., WATANABE, J., FURUKAWA, T., CHOI, S. W., and TAKEZOE, H., 1997, J. mater. Chem., 7, 1307
14 LINK, D. R., NATALE, G., SHAO, R., MCLENNAN, J. E., CLARK, N.
A., KÖRBLOVA, E., and WALBA, D. M., 1997, Science, 278, 1924.

15 NIORI, T., SEKINE, F., WATANABE, J., FURUKAWA, T., and TAKEZOE, 1996, J. mater. Chem., 6, 1231.
16 BRAND, H. R., CLADIS, P. E., and PLEINER, H., 1998, Eur. Phys. J., B6, 347.
17 BRAND, H. R., CLADIS, P. E., and PLEINER, H., 1999, Int. J. Engin. Sci. (in the press).
18 PLEINER, H., BRAND, H. R., and CLADIS, P. E., Proceedings of the 7th International Conference on Ferroelectric Liquid Crystals, to appear in Ferroelectrics.
19 CLADIS, P. E., BRAND, H. R., and PLEINER, H., Proceedings of the 7th International Conference on Ferroelectric Liquid Crystals, to appear in Ferroelectrics.
20 BRAND, H. R., CLADIS, P. E., and FINN P. L., 1985, Phys. Rev., A31, 361.
21 For a recent review: FUKUDA, A., TAKANISHI, Y. ISOZAKI, T., ISHIKAWA, K., and TAKEZOE, H., 1996, J. mater. Chem., 4, 671.
22 CLADIS, P. E., and BRAND, H. R., 1993, Liq. Cryst., 14, 1327.

23 See for example: YAMADA,Y., YAMAMOTO,N., NAKAMURA, K., KOSHOBU, N., OHMI, S., SATO, R., AOKI, K. and IMAI, S., 1995, SID 95 Digest, p. 789; NAKAMURA, K., KOSHOUBU, N., YAMAMOTO, N., YAMADA, Y., OKABE, N., and SUZUKI, Y., 1995 Asia Display '95, Hammamatsu, p. 69.
24 DE GENNES, P. G., 1975, The Physics Of Liquid Crystals (Oxford: Clarendon Press), Chap. 6.

