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Abstract

We derive the complete set of macroscopic dynamic equations for ferrofluids in the ne-
matic liquid crystal phase under an external magnetic field. We include the magnetization
as an independent dynamic degree of freedom. Special emphasis is laid on possible static
and dynamic crosscouplings between magnetization, director reorientations and flow. As
examples we discuss the field dependence of the sound spectrum and the rheology of shear
flow.

PACS: 61.30.-v, 75.50.Mm, 05.70.Ln

1 Introduction

Ferronematics belong to a class of complex
materials which stably incorporate nano-sized
magnetic particles into a liquid crystalline ma-
trix. The production of those or similar smart
materials opens up the perspective for a vari-
ety of new technological developments. Indeed,
nematic liquid crystals are interesting materi-
als due to their optical birefringent and scat-
tering properties, which are controllable by ex-
ternal electrical or magnetic fields or by shear
stresses. In their seminal work Brochard and
de Gennes1 introduced the challenging idea to
intensify the magnetic sensitivity of the orien-
tational order parameter by doping the LC ma-
trix with a small amount of ferromagnetic par-
ticles, i.e. with a ferrofluid.2 Due to the strong
surface anchoring of the magnetic grains on the

surrounding nematic matrix the susceptibility
of the substance is raised by several orders of
magnitude in comparison to pure nematics.3–5

Very soon after the first synthesis of fer-
rofluids2 a variety of thermotropic, discotic and
lyotropic ferronematics were reported.6–9 Par-
ticularly appropriate for experimental studies
is a lyotropic micellar nematic system3,10,11

doped with an aqueous ferrofluid.12,13 The fea-
ture of liquid crystal transparency is an issue of
considerable interest.14 Recently highly trans-
parent lyotropic ferrofluid nematic liquid crys-
tals have been reported.15

With the synthesis of the first thermotropic
ferronematics4 it turned out that the orienta-
tion between the magnetization and the ne-
matic ordering is not completely rigid. This led
Burylov and Raikher16 to an approach which
treats the direction of the (saturated) magne-
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tization and the nematic director as indepen-
dent variables (F-nematic, see below). In a re-
cent thermodynamic consideration based on a
Ginzburg-Landau description17 we worked out
the various possible equilibrium structures of
such a nematic ferrofluid system. They can
undergo phase transitions from the isotropic
phase (no order) either into the superparamag-
netic (S) nematic phase (only nematic but no
spontaneous magnetic order) or into the fer-
romagnetic (F) nematic phase (nematic and
spontaneous magnetic order). In the latter
case the magnetization is either parallel to an
external magnetic field (with the nematic di-
rector parallel or perpendicular to it) or the
three directions are all different but lie in the
same plane. However, since there is as yet no
experimental proof for the existence of an F-
nematic phase, we will focus here on the usual
S-case. We mention, however, that in an ex-
ternal magnetic field the dynamics of an F-
nematic with the magnetization parallel to the
field is quite similar to that of the S-type, since
they differ only in the origin of the equilibrium
magnetization. In the remainder of this paper
we shall follow the usual convention and re-
fer to the S-phase by the simple term ferrone-
matic. If such a ferronematic is exposed to an
external magnetic field the induced magneti-
zation is always co-aligned, while the nematic
director can be parallel18 or perpendicular3 to
it. In the former case the equilibrium configu-
ration the system is uniaxial. This case will be
described in the main text below. The biax-
ial case, where the director is perpendicular to
the external field, is only slightly more compli-
cated and will be discussed briefly in Appendix
A.

To derive the dynamic equations we use the
hydrodynamic method. Hydrodynamics de-
scribes a system in the long wavelength limit
and for long time scales. The hydrodynamic
equations are derived by means of symmetry
and thermodynamic arguments. The main ad-
vantage of the hydrodynamic method lies in its

generality, which allows its application to very
different systems. However, the occurrence of
phenomenological parameters in the static and
dynamic expansions are the prize one has to
pay for this generality. Therefore coefficients
turning up in the equations below have to be
determined by microscopic models or by exper-
iments.

There are cases, where non-hydrodynamic,
relaxing processes become so slow that their
dynamics takes place on a macroscopic time
scale as well. Then it is appropriate to also in-
clude non-hydrodynamic, but slowly relaxing
variables in the dynamic description of such
a system. However, there are no first princi-
ples to select those slowly relaxing variables
and heuristic arguments have to be used in-
stead. Such a phenomenological macroscopic
description does not have the solid foundation
of a truly hydrodynamic theory. On the other
hand, by comparing the implications of this ex-
tended description with experiments, one can
learn for which systems, and under what condi-
tions, the inclusion of those non-hydrodynamic
variables is required for a reasonable descrip-
tion.

In ferrofluids the magnetization (its orien-
tation as well as its absolute value) relaxes to
the equilibrium value set by the external field.
The appropriate relaxation time is much larger
than all microscopic time scales and can be
relevant for the macroscopic dynamics, partic-
ularly in complicated lyotropic systems.19 In
this case one should treat the magnetization
as an additional dynamic variable with its own
dynamical (relaxation) equation. For isotropic
ferrofluids this has been done in20 and within a
hydrodynamic description quite recently in.21

In ferronematics the orientations of the direc-
tor and the magnetization are linked in equilib-
rium, but the dynamics off equilibrium can be
quite different: an external field reorients the
magnetization quite easily due to the super-
paramagnetic effect, but is less effective regard-
ing the director, which is only coupled to the
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magnetic field by the diamagnetic anisotropy
effect. Vice versa, an electric field strongly ori-
ents the director but not the orientation of the
magnetization. Thus, it is easy to create sit-
uations, where the director and the magneti-
zation are quite different and where they relax
independently into their equilibrium orienta-
tion. We also keep the absolute value of the
magnetization as a relevant variable, but not
the degree of nematic order, since the latter is
not specifically influenced by a magnetic field
or by the magnetic degrees of freedom and,
thus, behaves as in ordinary nematics (and
is relevant near the phase transitions to the
isotropic phase or to fluid smectic liquid crys-
talline phases, only).

For ferronematics hydrodynamic equations
were derived22 in the limit that the magnetic
degree of freedom has already relaxed to its
equilibrium value. Concentrating on novel dy-
namic effects linear in the magnetic field, it
was shown that flow alignment, heat conduc-
tion, diffusion, thermodiffusion, viscosity and
director reorientation are all modified in the
presence of an external field. The appropriate
material tensors – relevant also for the present
treatment – are listed in Appendix B. In23

an extended description of electromagnetic ef-
fects in nematic liquid crystals has been given
within the framework of generalized dissipa-
tive Maxwell equations. A non-hydrodynamic
magnetic degree of freedom (a generalized dis-
sipative magnetic field) is introduced, the dy-
namics of which can be compared to the dis-
sipative part of our magnetization dynamics,
while there is no counterpart in23 to the re-
versible dynamics of an independent magneti-
zation degree of freedom (see below).

Here we generalize the set of hydrodynamic
equations for ferronematics (in a constant ex-
ternal magnetic field) by including the magne-
tization as an additional, slowly relaxing vari-
able. Special emphasis is laid on the static
(Sec.2) and dynamic (Sec.3) crosscouplings be-
tween the nematic and the magnetic degrees of

freedom. As examples for their relevance, and
possible ways for measuring such effects, we
discuss in more detail sound propagation and
damping (Sec.4) as well as the rheology during
shear flow (Sec.5).

2 Statics and thermody-

namics

The macroscopic description of a system starts
with the identification of the relevant variables.
Apart from the quantities that are related to
local conservation laws, like mass density (ρ),
momentum density (g), energy density (ε) and
concentration (c) of the magnetic particles24 or
that are related to spontaneously broken con-
tinuous symmetries like reorientations of the
director n, we take, as discussed in the Intro-
duction, the magnetization M as slowly relax-
ing variable. To take into account Maxwell’s
equations the magnetic induction B must be
considered as well. According to the Eule-
rian description all variables are local fields,
i.e. volume densities that depend on space and
time. The director n is a unit vector and due
to the special nematic symmetry all equations
have to be invariant under the replacement
n → −n. The magnetization M = Mm is as-
sociated with rotations δm as well as changes
in the absolute value δM .

Assuming local thermodynamic equilib-
rium, i.e. all other, fast relaxing quantities are
already in equilibrium, the Gibbs relation

dε = Tdσ + µdρ + µcdc + vidgi (1)

+ HidBi + hM
i dMi + hn′

i dni + Φijd(∇jni)

connects the macroscopic variables to the en-
tropy density σ. In eq.(1) the thermodynamic
quantities: chemical potential (µ), tempera-
ture (T ), relative chemical potential (µc), ne-
matic molecular fields (Φij, hn′

i ), velocity (vi),
magnetic Maxwell field (Hi) and the mag-
netic molecular field (hM

i ) are defined as par-
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tial derivatives of the energy density with the
respect to the appropriate variables.25

In equilibrium the magnetization is gener-
ally a nonlinear function of the external field.
This function is known from experiments26 or
from simulations.27 The equilibrium value of
the magnetization, M 0 at a given external
field, which may have a field independent part
in case of true ferromagnetism, is an input pa-
rameter into our dynamic theory. In addition,
we assume the equilibrium orientation of the
director to be parallel to the field (and the
equilibrium magnetization). The case of a per-
pendicular director alignment is discussed in
Appendix A.

The statics, i.e. the relation between the
conjugate quantities and the variables, is con-
veniently set up by providing an energy den-
sity function, usually in harmonic approxima-
tion (bilinear in the variables). We will do here
the same for the magnetic part of the energy
density and refer to Appendix C for a more
general description. Thus ε = εn + εM with
the magnetic energy density

εM(B, M) =
B2

2
−M ·B (2)

+
1

2
A1 (n ·M)2 +

1

2
A2M

2

and εn the energy density of a conventional ne-
matic liquid crystal25 (without magnetization
and external field). The term 1

2
A1 (n ·M)2

describes the coupling between the nematic di-
rector and the magnetic particles. This strong
interaction was observed in a series of experi-
ments3–5 studying the Fredericks transition in
ferronematics. For n ‖ M being the energy
minimum, A1 has to be negative. Generally
the coefficients A1,2 are functions of the state
variables, like temperature, pressure etc., but
also of M 2

0 (or the external field strength).
Only for a linearized description, valid for
small deviations from equilibrium, are the co-
efficients constant.

Using eq.(2), the magnetic Maxwell field Hi

is defined in the usual way

Hi =

(
∂ε

∂Bi

)
M ,n,...

= Bi −Mi, (3)

while the magnetic molecular field hM
i reads

hM
i =

(
∂ε

∂Mi

)
B,n,...

(4)

= −Bi + A1ninjMj + A2Mi

Note that because of the definition (3), it is
not possible to have a direct coupling between
the external field B and the director; the field
orientation of the director is mediated by the
magnetization via the term ∼ A1.

In equilibrium hM
i has to be zero and Bi =

A1ninjMj + A2Mi results. With that solution
the magnetic energy density (2) can be ex-
pressed as εM(B) = 1

2
Hi(B)Bi. In the regime

of linear magnetism or if linearized for small
deviations from equilibrium, one can use in-
stead the usual magnetic susceptibility tensors,
defined by Bi = µijHj and Mi = χijHj, which
both have the uniaxial form µij = µ⊥δtr

ij +
µ‖ ninj = µ⊥δij +µaninj (where δtr

ij = δij−ninj

is the transverse Kronecker symbol). Compar-
ison with the equilibrium solution of (4) gives
A1 = µ‖ /χ‖ − µ⊥/χ⊥ and A2 = µ⊥/χ⊥. Writ-
ten in this way the magnetic energy density (2)
obtains the familiar form εM(B) = 1

2
µijHiHj.

In the general case, again, the magnetic sus-
ceptibilities are not constants, but depend on
the magnetization or the external field.

In ordinary nematic liquid crystals instead
of εM(B) usually the Legendre-transformed
energy εM(H) = εM(B) −B ·H is used, for
which we get the well-known form 2εM(H) =
−χa(n · H)2 − (χ⊥ − 1)H2 where very often
the vacuum field energy (H2) is omitted.29

The molecular field hn′
i

hn′
i = δtr

ij

(
∂ε

∂nj

)
M ,B,...

= A1δ
tr
ij MjMknk

(5)
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and Φij that follows from the gradient part of
the energy density28

Φij =

(
∂ε

∂∇jni

)
M ,B,...

= Kijkl∇knl, (6)

can be combined to the field

hn
i =

δ

δni

∫
εdV = hn′

i −∇jΦij. (7)

Since n is a unit vector that can only rotate,
nih

n′
i = 0, which is ensured in (5) by the

transverse Kronecker symbol. In equilibrium,
n = const. and δtr

ij Mj = 0, hence hn
i = 0.

3 Dynamics

The hydrodynamic equations for conserved,
broken-symmetry and slowly relaxing variables
are

∂

∂t
ρ + div ρv = 0 (8)

∂

∂t
σ + div σv + divjσ =

R

T
(9)

∂

∂t
gi +∇j

(
vjgi + δijp + σth

ij + σij

)
= 0 (10)( ∂

∂t
+ vj∇j

)
ni + (n × ω)i + Yi = 0 (11)

ρ
( ∂

∂t
+ vj∇j

)
c + div jc = 0 (12)( ∂

∂t
+ vj∇j

)
Mi + (M × ω)i + Xi = 0 (13)

with

σth
ij = −BjHi −

1

2
(Mjh

M
i −Mih

M
j )

− 1

2
(njh

n
i − nih

n
j ) + Φkj∇ink (14)

where ωi = 1
2
εijk∇jvk is the vorticity. The

thermodynamic pressure p is given by

p = −ε + Tσ + µρ + g · v + B · H . (15)

The parts of the currents shown explicitly in
(8-14) are not material dependent, but are

given by general symmetry and thermody-
namic principles,25 like transformation behav-
ior under translations (convective terms) or ro-
tations (e.g. . . . × ω) and by the requirement
of zero entropy production (R = 0).

Using the relation25 Ωij(−MiBj + hM
i Mj +

hn
i nj + Φki∇jnk + ∇k(njΦik)) = 0, which is

valid for any constant antisymmetric matrix
Ωij = −Ωji and which follows from the fact
that the energy density (1) has to be invariant
under constant rotation, eq.(14) can be trans-
formed into

σth
ij = −1

2
(BjHi + BiHj) +

1

2
(Φki∇jnk

+ Φkj∇ink) +
1

2
∇k(njΦik − niΦjk). (16)

Here the antisymmetric part has the form of a
divergence, which ensures angular momentum
conservation. It can be brought into a mani-
festly symmetric form by some redefinitions.28

The phenomenological parts of the entropy
current jσ

i , the stress tensor σij, the concentra-
tion current jc

i and the quasi-currents Yi and
Xi associated with the temporal changes of the
director and the magnetization, respectively,
are given below. The source term R/T in (9)
is the entropy production, which is zero for re-
versible and positive for irreversible processes.
The phenomenological part of the stress tensor
σij has to be symmetric guaranteeing angular
momentum conservation.

Since we are not dealing with electromag-
netic effects, we can use the static Maxwell
equations to determine B

curlH = curl (B −M) = 0, divB = 0. (17)

The dynamic equation for the energy den-
sity follows from (8-13) via (1) and is not
shown here.

The phenomenological currents written
down in eq.(8-13) can be split into dissipa-
tive (superscript D) and into reversible (su-
perscript R) parts, depending on whether they
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give rise to a finite amount of dissipation (R >
0) or to a zero entropy production (R = 0).
Using general symmetry and invariance ar-
guments and the fact, that a magnetic field
changes sign under time reversal, we obtain

jσR
i = −κR

ij(M)∇jT −DTR
ij (M)∇jµc (18)

jcR
i = −DR

ij(M)∇jµc −DTR
ij (M)∇jT (19)

σR
ij = −1

2
λkjih

n
k − cR

kij(M)hM
k

−νR
ijkl(M)Akl (20)

Y R
i = −1

2
λijkAjk + (γ−1)R

ij(M)hn
j

+χR
(
n× hM

)
i

(21)

XR
i = bR

ij(M)hM
j + χR (n× hn)i

−cR
ijk(M)Ajk (22)

with Aij = 1
2
(∇ivj +∇jvi). The

magnetization-dependent tensors κR
ij(M),

DR
ij(M), DTR

ij (M), (γ−1)R
ij(M) , bR

ij(M)),
νR

ijkl(M), cR
ijk(M) are all odd functions of the

magnetization (see Appendix B (B.1-B.3)).
For the case of M already relaxed to its equi-
librium value, similar tensors exist with M
replaced by the external field (except for bR

ij

and cR
ijk). Their physical meaning has been

discussed in.22

Due to the new degree of freedom (magne-
tization) there is an additional term in the ne-
matic quasi-current eq.(21) χR

(
n× hM

)
i
and

a counter term in XR
i , which describes a dy-

namic cross-coupling between magnetization
and nematic director. It does not exist in
ordinary nematics nor in isotropic ferrofluids.
Its physical meaning (together with bR

ij and
cR
ijk) will be explored in the Secs.(4,5). The

flow alignment tensor λijk has the usual form28

λijk = λ(δtr
ij nk + δtr

iknj).
For the derivation of the dissipative parts

of the phenomenological currents one usually
expands the dissipation function R to sec-
ond order in the thermodynamic forces and
then obtains the dissipative currents by tak-
ing the variational derivatives with respect to

the forces. We find for the dissipation function

R =
1

2
κij (∇iT ) (∇jT ) +

1

2
νijklAijAkl

+ λD
ijk(M)hn

i Ajk +
1

2
Dij (∇iµc) (∇jµc)

+
1

2
bD
ijh

M
i hM

j + cD
ijkh

M
i Ajk + χD

ij (M)hM
j hn

i

+
1

2γ1

hn
i δ

tr
ij h

n
j + DT

ij (∇jT ) (∇iµc) (23)

Here νijkl is the uniaxial viscosity tensor28

and κij, Dij and DT
ij describe heat conduc-

tion, diffusion and thermodiffusion, respec-
tively. Director diffusion or relaxation is given
by one coefficient γ1, while magnetization re-
laxation bD

ij contains a transverse (rotational)
and a longitudinal (absolute value) coefficient
bD
ij = bD

⊥δtr
ij + bD

‖
ninj. All the 2nd rank ten-

sors mentioned above have this form. The
magnetization-dependent tensors are odd func-
tions of M and listed in Appendix B (B.1-
B.3). The meaning of λD

ijk has been discussed
in,22 while χD

ij will show up in Sec.(5). The
3rd rank tensor cD

ijk again is specific to ne-
matic ferrofluids and contains one coefficient
cD
ijk = cD(εimknmnj + εimjnmnk) describing a

dissipative coupling between flow and orienta-
tion of the magnetization.

The range of possible values of the coeffi-
cients in eq.(23) is restricted by the positivity
of the entropy production.

The dissipative parts of the currents then
read

jσD
i = −κij∇jT −DT

ij∇jµc (24)

jcD
i = −Dij∇jµc −DT

ij∇jT (25)

σD
ij = −νD

ijklAkl − λD
kij(M)hn

k − cD
kijh

M
k (26)

Y D
i =

1

γ1

δtr
ij h

n
j + χD

ij (M)hM
j

+λD
ijk(M)Ajk (27)

XD
i = bD

ijh
M
j + χD

ji(M)hn
j + cD

ijkAjk (28)

This set of equations can be compared
with the dissipative dynamics given in23 for
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the magnetic and nematic degrees of free-
dom. Interpreting −HD

i as our current XD
i

and c curlE0 as our conjugate hM , Eq.(13) of23

is compatible with eqs. (26-28) in the uniaxial
case (n ‖ m in equilibrium). There is however
no counterpart in23 to the reversible dynamics
of eqs.(20-22).

4 Propagation of sound

In this section we derive the longitudinal eigen-
modes (sound) of the system with the nematic
director n0 parallel to the magnetic field in
equilibrium. In ordinary nematics the sound
velocity is isotropic and does not depend on
the external field, since the nematic orienta-
tional fluctuations do not couple to sound.
Only sound damping is anisotropic due to
the anisotropy of viscosity and heat conduc-
tion. In nematic ferrofluids with the magne-
tization relaxed to its equilibrium value M 0,
sound is accompanied by transverse forces,22

but the sound velocity is still isotropic and
field-independent. Here we focus on the ef-
fect of the new variable (magnetization) on the
sound spectrum. Thus, we can neglect all dif-
fusional processes connected e.g. with viscosity
and heat conduction as well as their reversible
counterparts. Only the relaxations of the di-
rector and the magnetization in the field are
kept. The relevant linearized static fields are
then

hn′
i = A1M0δMi − A1M0

2δni (29)

hM
i = −δBi + A1M0δni + A2δMi

+A1n
0
i n

0
jδMj (30)

with n0
i the unit vector along the field. Assum-

ing a one-dimensional plane wave the space-
time dependence is ∼ exp i(−ωt + k · r) for all
deviations from equilibrium and the linearized
set of dynamic equations becomes an algebraic
one. Even then the full system of equations is
rather complicated in the case of ferronemat-

ics. It can be simplified by looking at particu-
lar geometries.

Let us consider sound in the case where the
external magnetic field, the equilibrium mag-
netization, and the director are perpendicu-
lar to the wave vector. Field fluctuations δBi

are fixed by the static Maxwell equations (17)
to δBi = δMj(δij − kikjk

−2). However, since
A2 � 1 (because of χ⊥ � 1), this contribution
can safely be neglected in (30). Then there are
only three relevant variables left, the density ρ,
the longitudinal velocity component (v ‖ k)
and the (longitudinal) component δM ‖ B,
which is transverse to k, changing the sound
dispersion relation into

ω2

k2
− c2

0 =
µ‖

ρ
(cR

3 + cR
4 )2χ‖ H2 iω

iω − τ
(31)

with c0 the usual adiabatic sound velocity and
τ = bD

‖
µ‖ /χ‖ the relaxation time of the longi-

tudinal magnetization. Here B2 has been re-
placed by (χ‖ H)2 and A1 +A2 by µ‖ /χ‖ . The

coefficient cR
3 (B.2) also exists in isotropic fer-

rofluids. Thus, this change in the sound disper-
sion relation is possible in the isotropic phase
as well.30

If the sound period is much bigger than the
inverse relaxation time of the magnetization
kc0 � 1/τ , there is a field dependent addi-
tion to the sound velocity, while in the oppo-
site, realistic case kc0 � 1/τ , there is a field-
dependent sound damping due to magnetiza-
tion relaxation

Im(ω) = −1

2

(cR
3 + cR

4 )2

ρbD
‖

χ2
‖
H2k2 (32)

that comes in addition to the usual magnetic-
field-independent sound damping (not shown
here). This effect can be used to measure the
combination cR

3 +cR
4 of new coefficients by vary-

ing the external field. In the case of sound
waves along the field direction (k ‖ B) the
situation is quite similar, only a different com-
bination of transport parameters is involved,
i.e. in (31,32) cR

3 + cR
4 has to be replaced by
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cR
1 + 2cR

2 + cR
3 + cR

4 + 2cR
5 + cR

6 . A completely
different situation arises, when the sound is
oblique to the field B (i.e. k has an angle dif-
ferent from zero or π with B). Then the lon-
gitudinal variables divv, δρ, and B · δM are
coupled to the transverse ones (curlv, δtr

ij δMj,
δni) mainly through the existence of the ten-
sor cR

ijk(M) (20, 22, B.2). This has the conse-
quence that shear flow is connected to sound
and vice versa, and if one excites one of them
the other is excited as well. A similar phenom-
ena for isotropic ferrofluids is discussed in.30

The picture is qualitatively similar for the
biaxial case (n ⊥ B). When the sound is along
the preferred directions (either parallel to n,
to B or perpendicular to both) the sound dis-
persion gets an extra field dependent damping
similar to (32), while in the oblique case again
sound is coupled to shear flow.

5 Rheology

To evaluate the influence of the static and dy-
namic coupling between the nematic degree
of freedom and the magnetization we inves-
tigate the stress induced by applying a shear
flow that varies periodically in time. To make
the problem simpler we consider the particu-
lar geometry, where the equilibrium orienta-
tion of the nematic director and the magne-
tization are perpendicular to the flow direc-
tion and along the gradient direction. The lin-
ear response of the system that contains infor-
mation on the material properties is described
by the frequency dependent response function
G(ω), which is defined as the ratio of the in-
duced stress (say σxz) to the applied ”strain”
exz ≡ iAxz/ω

G(ω) =
σxz

exz

= G′(ω) + iG′′(ω), (33)

which has poles at the frequencies of those
eigenmodes that couple to shear flow. The
real part G′ (imaginary part G′′) describes the
reversible, in-phase (irreversible, out-of-phase)

response. When calculating G(ω) the flow is
assumed to show the undisturbed, externally
imposed linear profile.

The relaxation process of the magneti-
zation to its equilibrium value is fast in
comparison to the nematic director relax-
ation/diffusion time. This gives the possibil-
ity to investigate the influence of the nematic-
magnetization couplings on the two modes sep-
arately. Since the slow nematic mode seems
to be more convenient for experiments, we
will concentrate on this mode in the follow-
ing. We consider the situation without an ex-
ternal magnetic field first and then the much
more complicated case with a field (along the
gradient direction). This probes the coupled
dynamics of the transverse variables (curlv,
δtr
ij δMj, δni).

The response function without magnetic
field has the following form

G′

ω2
=

CΓ

ω2 + Γ2
(34)

G′′

ω
= ν3 −

ξ1

q1

+
Cω2

ω2 + Γ2
, (35)

with

ξ1 =
1− λ2

4
+

(cD)2

bD
⊥γ1

− cDχR λ

bD
⊥

(36)

q1 =
1

γ1

+
(χR)2

bD
⊥

(37)

C =
ξ1

q1

− (cD)2

bD
⊥

=
1

q1

(1

4
−

[λ

2
+

cDχR

bD
⊥

]2
)

(38)

Γ = q1K3k
2 (39)

Eqs.(34,35) are, as discussed above, only ap-
plicable for low frequencies with ω � A2b

D
⊥ .

In the loss modulus G′′ the apparent New-
tonian shear viscosity differs from the bare
shear viscosity ν3 by −ξ1/q1 where 1/q1 (37) is
the renormalized nematic orientational viscos-
ity that deviates from γ1 due to the reversible
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dynamic crosscoupling (χR) between director
and magnetization (21,22), and the transverse
magnetization relaxation bD

⊥ . The new contri-
bution ∼ ξ1 is due to the relaxation of the
magnetization (bD

⊥) and of the director (γ1),
as well as due to the dissipative crosscoupling
between flow and magnetization (cD) and the
reversible crosscouplings of the director with
flow (λ) and magnetization (χR). This change
in the apparent viscosity is absent in isotropic
ferrofluids, but present in ordinary nematics
(for λ 6= ±1). However, since ferronematics,
ordinary nematics and isotropic ferrofluids are
different phases with generally different (bare)
viscosities, the additional change of the viscos-
ity due the magnetization degree of freedom is
only a quantitative effect and probably diffi-
cult to observe. There are, however, magnetic
oscillations (around M = 0) induced by the pe-
riodic shear flow (directly via cD) or mediated

by director oscillations (via χR and λ). The os-
cillating magnetization points out of the shear
plane with a peak amplitude that has its max-
imum for ω ≈ Γ. Such magnetic oscillations
can be measured by a Hall probe.

Qualitatively new, compared to isotropic
ferrofluids, is the occurrence of a director dif-
fusional mode in G′ and G′′ with amplitude
C (38) and width Γ (39). The amplitude C
shows that, even without a magnetic field, the
magnetization as an independent variable with
its own dynamics influences the relaxation pro-
cess of the director. However this mode has its
strongest influence at ω ≈ Γ, which is very low,
if the wave vector k is small, and it may be hard
to detect experimentally. Therefore we also
study the case with an external field, where
not only the relevant frequencies are shifted to
higher values, but where also another, qualita-
tively new behavior is seen. Indeed we find

G′

ω
=

1

2Mq2

(
Ω2ξ1 − ΩMq2ξ2 + q1

2ξ1

(Ω− q2M)2 + (q1 −M2q3)
2 −

Ω2ξ1 + ΩMq2ξ2 + q2
1ξ1

(Ω + q2M)2 + (q1 −M2q3)
2

)
(40)

G′′

ω
= ν3 −

1

2Mq2

(
Ω3ξ3 − Ω2Mξ3q2 + Ωq1

2ξ3 + Mq2q1ξ1

(Ω− q2M)2 + (q1 −M2q3)
2

− Ω3ξ3 + Ω2Mξ3q2 + Ωq1
2ξ3 −Mq2q1ξ1

(Ω + q2M)2 + (q1 −M2q3)
2

)
(41)

where Ω ≡ ω/(K3k
2 + χaH

2) is the scaled fre-
quency and M = χ‖ H. The abbreviations q2,3

q2 =
1

γR
1

+
1

γR
2

+
2χD

2 χR

bD
⊥

− (χR)2

(bD
⊥)2

(bR
1 + bR

2 ) (42)

q3 =
1

(bD
⊥)3

(
χD

2 bD
⊥ − χR(bR

1 + bR
2 )

)2
(43)

are combinations of the various static suscepti-
bilities and the transport parameters involved,
while ξ2 = ξ1 + q1ξ3, and ξ3 = (cD)2/bD

⊥ with
ξ1 and q1 given in (36,37), respectively. Since

we concentrate on the frequency dependence
here, we have suppressed some additional M2-
dependences of ξ1−3 and q2, which would ren-
der the results (40,41) extremely involved.

In the presence of an external field the re-
laxation mode is much more complicated than
without a field. The most important, and
experimentally most easily detectable feature
is the shift of the nematic pole to finite fre-
quencies Ω = ±q2M (cf. Fig.1). The exis-
tence of q2 is characteristic for nematic fer-
rofluids, since neither the reversible coupling
between director and magnetization rotations
(χR), nor the reversible counterparts to direc-
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Figure 1: G′′ (left) and G′ (right) as functions of the frequency for increasing magnetic field
strengths: H = 0 (solid), H = 320G (dashed), and H = 350G (dash-dotted); in our rationalized
Gaussian unit system (cf. eq.(2)) 1G2 = (1/4π)erg cm−3. The values of the parameters were
taken to be γ1 = 10−1 g s−1cm−1, K3 = 10−6 dyn, k = 100cm−1, ν3 = 10−1 g s−1cm−1, χa =
10−4, χ‖ = 10−4, χR = 3 s−1G−1, χD

2 = 3 cm s g−1, bD
⊥ = 1 s−1, bR

1 + bR
2 = 40 G−1s−1, cD =

7×10−3 G, (1/γR
1 )+(1/γR

2 ) = 1 s cm g−1G−1, and λ = 1 (to eliminate ordinary nematic effects).
On this scale the zero field effects (34,35) can hardly be seen.

tor diffusion/relaxation (γR
1,2) and magnetiza-

tion relaxation (bR
1,2) exist in ordinary nematics

or isotropic ferrofluids. For the true frequency
ω the shift increases ∼ H3 for fields larger than√

K3k2/χa. In an oscillating Couette shear ex-
periment, under the approximation of a lin-
ear velocity profile, this behavior can be mea-
sured. There is also the possibility that the

nematic orientational mode becomes propagat-
ing for some intermediate fields strengths, if
q2M > q1−M2q3. As in the field-free case the
oscillating shear flow induces also magnetiza-
tion oscillations, but with a field there are os-
cillating components not only out of the shear
plane, but also along the flow direction.

6 Conclusion

We derive the complete set of macroscopic dy-
namic equations for ferronematics introducing
the magnetization as an independent slowly
relaxing variable. We show that orientational
changes of the magnetization are coupled to
nematic director reorientations not only in the
statics, but in the dynamics as well. In addi-
tion, there are reversible and dissipative dy-
namic crosscouplings between (compressional,
shear and elongational) flow, (rotations and
changes of the absolute value of the) magne-
tization and director reorientations. Some of

these couplings are only possible, when a finite
magnetization is present due to spontaneous
magnetic order and/or due to an external mag-
netic field. In order to measure some combi-
nations of the parameters that describe these
crosscouplings we study the sound wave spec-
trum and the rheology of shear flow. There is
an additional field dependent contribution to
sound damping due to such a crosscoupling.
For the case of a sound wave propagating in
a direction oblique to the preferred directions
(set by equilibrium magnetization, nematic
director, or perpendicular to them) compres-
sional flow (and changes of the absolute value

10



of the magnetization) are coupled to shear flow
(and rotations of the director and the magne-
tization). In addition we discussed the linear
response of the system to oscillatory shear
flow concentrating on frequencies below the
transverse magnetization relaxation frequency.
This allows to describe the influence of the
magnetic dynamic degree of freedom on the
nematic director diffusion/relaxation mode for
ferronematic systems and the influence of the
magnetic field on it. Even without a magnetic
field the apparent viscosity is different from
the bare one and the modified nematic direc-
tor diffusion couples to the flow response. In
the presence of an external field the director
diffusion/relaxation is shifted to a finite fre-
quency, which approximately increases with
the third power of the field strength. Even in
the field-free case there are shear-flow-induced
oscillations of the magnetization out of the
shear plane.
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Appendix A Biaxiality

In this Appendix we deal with the case that
in equilibrium the nematic director n0 is per-
pendicular to the external field B (and the
magnetization M 0). This case is often real-
ized in lyotropic systems.3 In the plane per-
pendicular to the field the direction of n is not
specified, i.e. the rotational in-plane symme-
try is spontaneously broken and the system is
biaxial. Thus, there is one rotation of n (the
in-plane rotation) that is hydrodynamic (dif-
fusive), while the out-of-plane rotation is re-

laxing (non-hydrodynamic) due to the exter-
nal field. This difference to the uniaxial case
discussed in the main body of this manuscript
(where both rotations of n are relaxing) be-
comes apparent in the statics, i.e. in the mag-
netic energy of the system and hence in the
molecular fields hM

i and hn′
i .

The static eqs.(2-7) still apply, however
with A1 > 0 ensuring n0 ⊥ M 0. The lin-
earized expressions (4,5) for hn′

i and hM
i now

only contain the out-of-plane components of
n (Mkδnk), while the in-plane component ap-
pears in the gradient part Φij only.

The form of the dynamic equations is not
affected. Only the material tensors have a
more complicated form (containing more coef-
ficients generally) due to the lower orthorhom-
bic symmetry. We will give the biaxial form of
the field-free material tensors, while those that
have to contain an odd number of factors M
are given in Appendix B (for the uniaxial as
well as the biaxial case). In the biaxial case
we have to discriminate between the directions
of the director and the magnetization, which
we denote by its unit vector m = M/M . The
form of the material tensors of usual biaxial ne-
matics is given in31 and is contained below for
convenience. The symmetric 2nd rank tensors,
like the heat conduction tensor κij, the diffu-
sion tensor Dij, the thermodiffusion tensor DT

ij,
and magnetic relaxation tensor bD

ij , have 3 in-
dependent coefficients

κij = κ‖ ninj + κ⊥δ3
ij + κ3mimj (A.1)

where δ3
ij = δij − ninj −mimj.

For the third order tensors

cD
ijk = cD

1 (εimknmnj + εimjnmnk)

+ cD
2 (εimkmmmj + εimjmmmk) (A.2)

λijk = λ1(δ
3
ijnk + δ3

iknj)

+ λ2(mimjnk + mimknj) (A.3)

there is one coefficient more than in the uni-
axial case, each. The orientational diffusion

11



and relaxation of the director is governed by 1
coefficient each (cf. eq.(23))

R =
1

2
(

1

γ1

δ3
ij +

1

γ3

mimj)h
n
i h

n
j + . . . (A.4)

and the viscosity tensor has four additional co-
efficients

νijkl = ν1mimjmkml + ν2ninjnknl + ν3δ
3
ijδ

3
kl

+ ν4 (mkmlninj + mimjnknl)

+ ν5

(
mkmlδ

3
ij + mimjδ

3
kl

)
+ ν6

(
nknlδ

3
ij + ninjδ

3
kl

)
+ ν7 (mjmlnink + mjmkninl

+mimknjnl + mimlnjnk)

+ ν8

(
mjmlδ

3
ik + mjmkδ

3
il

+mimkδ
3
jl + mimlδ

3
jk

)
+ ν9

(
njnlδ

3
ik + njnkδ

3
il

+ninkδ
3
jl + ninlδ

3
jk

)
(A.5)

The reversible dynamic coupling between
director and magnetization is still given by
only one coefficient χR (21,22), but now con-
tains only the out-of-plane components Y R

i mi

or hn
i mi and XR

i δ3
ij or hM

i δ3
ij.

Appendix B Tensors linear in M

In this Appendix we list those tensors that
contain an odd number of factors M . For
simplicity we restrict ourselves to the linear
case of one M factor. We do not specify
the relative orientation of M with n, so these
forms can be used for the uniaxial (n ‖ M in
equilibrium) as well as the biaxial case (n ⊥
M in equilibrium). The reversible second
rank magnetization-dependent material ten-
sors, like the reversible analogues of heat con-
duction κR

ij(M), diffusion DR
ij(M), thermodif-

fusion DTR
ij (M), director (γ−1)R

ij(M) and mag-
netization relaxation bR

ij(M), are all of the form

κR
ij(M) = κR

1 εijkMk + κR
2 εijknknpMp (B.1)

+ κR
3 (εipqMpnqnj − εjpqMpnqni)

They are antisymmetric κR
ij(M) = −κR

ji(M)
according to Onsager’s relation κR

ij(M) =
κR

ji(−M) and give zero entropy production.22

The third rank tensor cR
ijk describing dy-

namic crosscoupling between flow and magne-
tization is symmetric in the two last indices
and reads

cR
ijk(M) = cR

1 Minjnk + cR
2 (δijMk

+ δikMj)

+ cR
3 Miδjk + cR

4 niMpnpδjk

+ cR
5 (niMjnk + niMknj)

+ cR
6 niMpnpnjnk (B.2)

The reversible analogue of the viscosity tensor
has eight components22

νR
ijkl(M) = νR

1 [εimpnjnknl + εjmpninknl

−εkmpnjninl − εlmpnjnkni] npMm

+νR
2 [εjmpnlδik − εlmpnjδik

+εjmpnkδil − εkmpnjδil

+εimpnkδjl − εkmpniδjl

+εimpnlδjk − εlmpniδjk] npMm

+νR
3 [εkmpnlδij + εlmpnkδij

−εimpnjδkl − εjmpniδkl] npMm

+νR
4 [εikpnjnl + εilpnjnk + εjlpnink

+εjkpninl] npnmMm

+νR
5 [εikpnjnl + εilpnjnk

+εjlpnink + εjkpninl] Mp

+νR
6 [εikpδjl + εilpδjk

+εjlpδik + εjkpδil] npnmMm

+νR
7 [εikpδjl + εilpδjk

+εjlpδik + εjkpδil] Mp

+νR
8 [εikp(Mjnl + Mlnj)

+εilp(Mjnk + Mknj)

+εjlp(Mink + Mkni)

+εjkp(Minl + Mlni)]np (B.3)

This fourth order tensor is antisymmetric in
the exchange of the first pair of indices with
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the second one, thus guaranteeing zero entropy
production.

The dissipative analogue of the flow align-
ment tensor λD

ijk is symmetric w.r.t. the 2 last
indices and transverse to n in the first index

λD
ijk (M) = λD

1 (δtr
iqεpjqMpnk + δtr

iqεpkqMpnj)

+ λD
2 (δtr

ikMpεpjqnq + δtr
ij Mpεpkqnq)

+ λD
3 (Mjεipknp + Mkεipjnp) (B.4)

+ λD
4 (Mqnqnjεipknp + Mqnqnkεipjnp)

+ λD
5 Mpεpiqnqnjnk + λD

6 Mpεpiqnqδ
tr
jk

The dissipative second rank tensor χD
ij is dif-

ferent from the reversible ones (B.1), since it
has to contain an odd number of n’s

χD
ij (M) = χD

1 δtr
ikMknj + χD

2 δtr
ij Mknk (B.5)

Such a coupling does not exist in isotropic fer-
rofluids, nor in conventional nematics.

In the biaxial case some new additional
terms cubic in M can be produced in (B.2-
B.5) by replacing any pair ninj with MiMj,
e.g. δtr

ij by δ3
ij = δij − ninj −MiMj and MiMj

terms.

Appendix C Nonlinear magnetization

In the general case the equilibrium value of the
magnetization M0 is a nonlinear function of an
external magnetic induction B, M0

i = fi (B).
In isotropic ferrofluids simple theoretical mod-
els predict f(B) = f(B)B/B with f(B) the
Langevin function and B = |B|. Actual ex-
periments26 and computer simulations27 show
a somewhat more complicated form for f(B).
We assume the function f(B) as known and
given. To our hydrodynamic theory this is an
input as are any other aspects of the equilib-
rium structure, e.g. the existence and the ori-
entation of n w.r.t the external field. Assum-
ing f(B) to be monotonous we can invert it
and call it g(M) = f−1(B). Using the same
arguments as in Sec.(2) one can construct the

magnetic part of the energy density in the fol-
lowing form

ε (B, n, M) =
B2

2
−M ·B

+

∫
(ninjg

(1)
j + δtr

ij g
(2)
j )dMi (C.1)

where, in contrast to the isotropic case, gi has
been decomposed into a longitudinal and a
transverse part. This leads to

Hi =

(
∂ε

∂Bi

)
M ,n,...

= Bi −Mi (C.2)

hM
i =

(
∂ε

∂Mi

)
n,B,...

= −Bi + ninjg
(1)
j + δtr

ij g
(2)
j . (C.3)

In equilibrium the magnetic molecular field hM
i

is zero and B = g ‖ n (requiring ninjgj = g
(1)
i

and δtr
ij g

(2)
j = 0 in equilibrium). Outside equi-

librium gi(M) 6= Bi and n is not parallel to
B, generally.

For the nematic molecular field

hn′
i = δtr

ij

(
∂ε

∂nj

)
M ,B,...

= δtr
ij nk

∫ (
dMj(g

(1)
k − g

(2)
k )

+dMk(g
(1)
j − g

(2)
j )

)
(C.4)

is found. Linearizing about equilibrium the
choices g

(1)
i = (A1 + A2)ninjMj and g

(2)
i =

A2δ
tr
ij Mj lead back to eqs.(4,5).
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