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We derive nonlinear hydrodynamic equations for visco-elastic media using the Eulerian description
for all macroscopic quantities and especially for the strain tensor. The form of the convective
nonlinearities is fixed by the requirement that in the appropriate limit the hydrodynamic equations
for solids have to emerge. Differences to previous descriptions are discussed.
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I. INTRODUCTION

Visco-elastic fluids behave as Newtonian ones at low frequencies, and as solids at higher frequencies. A consistent
hydrodynamic description needs to reflect this fact and must therefore contain, as special cases, both the hydrodynamic
theory for simple liquids and for solids (elastic media). The liquid limit is well known (Navier-Stokes equations) and
universally correctly implemented in the dynamic descriptions of visco-elasticity (Truesdell 1962, 1965, Noll 1958a,
Larson 1988, Bird et al. 1977, Coleman and Noll 1961, Oldroyd 1950, Giesekus 1966). The solid limit is much more
problematic, and compatibility especially in the nonlinear regime of large displacements and rotations (e.g. under the
condition of strong flow in the case of visco-elastic fluids) has so far proven elusive, as we shall see. Thus, we will
review the nonlinear hydrodynamic description of solids in the Appendix.

Hydrodynamics, the macroscopic description of condensed systems in the low frequency, long wavelength limit
(Martin et al. 1972, Forster 1975), is a well-established, systematic approach in condensed matter physics. This
method can be applied not only to simple fluids (Landau and Lifshitz 1959, Kadanoff and Martin 1963), to systems
with broken symmetries, like liquid crystals (Forster et al. 1971, Martin et al. 1972, Pleiner and Brand 1996, Brand
and Pleiner 1981, Liu 1981, Lubensky 1972) and superfluids (Khalatnikov 1965, Hohenberg and Martin 1965, Graham
1974, Graham and Pleiner 1975, Liu 1979, Brand et al. 1979), but also to complex fluids with slowly relaxing degrees
of freedom. The transient elasticity of visco-elastic fluids is an example of the latter case (Brand et al. 1990).

Of the three major non-Newtonian features in polymer rheology (visco-elasticity, normal stress differences, and
shear thinning or thickening) we will tackle particularly the first one (having of course implications for the second
one), but we will neither deal with shear thinning or thickening nor with additional slowly relaxing mesoscopic features
(Pleiner and Brand 1999) that e.g. add to normal stress differences. We concentrate on deriving a valid hydrodynamic
description of visco-elasticity for arbitrarily large deformations, rotations and flow. Taking the solid limit correctly
the structure of the equations will be determined completely. As a result we find i) that it is inevitable to use a
Eulerian description, ii) that the stress tensor is not the correct relaxing quantity (at least for nonlinear equations)
and iii) that only under rather special circumstances does the ’upper convected derivative’ give the correct quadratic
nonlinearities concerning flow. On the other hand, the relaxation of the strain field guarantees that the limit of simple
fluids is taken correctly, too.

II. VISCO-ELASTICITY

Visco-elasticity is the phenomenon where complex fluids react elastically (solid-like) at higher frequencies (frequency
ω → ∞), while at sufficiently low frequencies (ω → 0) the response is viscous (fluid-like). This can be described by
replacing the (Newtonian) shear viscosity (in the Navier-Stokes equation for isotropic fluids) by a complex generalized
viscosity

ν → ν(ω) = ν +
τC

1 + iωτ
(1)
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where τ is the characteristic (Maxwell) time that discriminates between the long- and short-time limit and C is the
elastic modulus. Such a simple treatment may be sufficient for the linear theory of isotropic visco-elastic fluids, but
its generalization to nonlinear descriptions of more complex fluids is impossible. First Eq. (1) is based on Fourier
transformation, which is not a suitable tool for nonlinear equations and, second, it is not at all obvious how additional
degrees of freedom (of complex fluids) can be incorporated into such a description. The natural thing to do is to
establish additional dynamic equations for the visco-elastic degree of freedom. The questions are what variables to
choose and what the additional equations then look like.

In the Appendix we discuss the correct nonlinear hydrodynamic description of elastic media (i.e. all media that
sustain a static shear modulus). The requirement that any nonlinear visco-elastic description reduces to that of elastic
media in the high frequency limit is sufficient to identify the correct variables and the form of their dynamic equations.

The central quantity describing deformations and orientations is ∇iaα (cf. Appendix), which has to be added to
the list of the other relevant variables. Here aα(~r) are three fields (α = 1, 2, 3 as for any Greek index) describing
displaced body points ~r. These fields can be viewed as the symmetry variables according to the spontaneous broken
translational symmetry (in 3 directions) in solids. In the Appendix it is discussed in detail how ∇iaα is related to
more familiar strain and rotation tensors. Taking into account gradients of the symmetry variables as well as the
densities, ε, ρ, and ~g, of the conserved quantities energy, mass, and linear momentum, respectively, the Gibbs relation
takes the form

dε = Tds+ µdρ+ vidgi + ψαid∇iaα + ψαijd∇i∇jaα (2)

where the thermodynamic conjugate quantities, temperature T , chemical potential µ, velocity ~v, ψαi, and ψαij are
defined via Eq. (2); s is the entropy density. All fields are functions of the (laboratory) space ~r and time t, since
we use consistently the Eulerian description. We have added second order gradients of aα describing bending and
inhomogeneous rotations. Although negligible for solids (and therefore disregarded in the Appendix) they are probably
important for visco-elastic fluids like polymers.

The energy is invariant under infinitesimal rotations, if ψαj∇iaα + (ψαik + ψαki)∇j∇kaα = ψαi∇jaα + (ψαjk +
ψαkj)∇i∇kaα, which acts as a constraint on ψαi and ψαik.

The dynamic equation for aα in elastic media has been derived in the Appendix. Eq. (A.5) has to be taken over
for visco-elastic fluids (in order to guarantee the high frequency limit) with the difference that the strains are not
permanent but have to relax (in order to guarantee the correct low frequency limit). Without strain relaxation

∇iȧα + (∇ivk)(∇kaα) + vk∇k∇iaα +∇iYα = 0 (3)

The quantity Yα is a phenomenological current containing diffusive effects (rather than relaxation) and reads (ne-
glecting cross-couplings) Yα = µαβij∇iψ

tot
βj with ψtot

βj = ψβj − ∇kψβjk. This diffusion is kept here for completeness,
but does not play a crucial role in polymers.

In order to describe strain relaxation one has to disentangle the quantity ∇iaα into strains and rotations. As
discussed in the Appendix there are two appropriate strain tensors in the Eulerian description, the Eulerian strain
tensor Uij and the invariant strain tensor εαβ . The former (being a second rank tensor in space) is not rotationally
invariant, while the latter one is (like any scalar quantity in real space). In order to tie in closely with the existing
literature, we will formulate the dynamics using the Eulerian strain. The popular Lagrangian strain tensor cannot be
used within the Eulerian description necessary for a consistent treatment.

The price one has to pay for using strains and rotations separately is that the theory can no longer be given in full
generality. The dynamic equations can be formulated in closed form only as a power expansion in the strains, as can
be seen from Eqs. (A.2,A.4). There is no restriction to the magnitude of the rotations. From the definition Eq. (A.1)
of Uij and from the decomposition Eq. (A.2) ∇iaα = RαjΞij the equation of motion Eq. (3) for ∇iaα can be written
in the implicit form (d/dt ≡ ∂/∂t+ vj∇j)

2 d
dtUij = [ΞjlΞlk∇ivk +RαkΞjk∇iYα + i↔ j] (4)

0 = ΞijRαl
d
dtRαj + Ξlj∇ivj −Rαl∇iYα + d

dtΞil (5)
0 = 2(d/dt)Uij + Ξik(d/dt)Ξkj + Ξjk(d/dt)Ξki (6)

Eqs. (4,5,6) can be solved iteratively using Eq. (A.4) by (i) taking Uij , d
dtRαi, (∇iYα), and (∇ivj) as small quantities,

and (ii) noting that Uij and Ξij are symmetric. To second order the result is

d
dtUij = Aij + [ 12Rαi∇jYα − Ukj∇ivk − ( 1

2τ )ijklΨtot
kl + i↔ j] (7)

d
dtRαi = Rαjωij +

1
2
Rαj [Rβi∇jYβ+RαjUjkAik − i↔ j] (8)
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with 2Aij ≡ ∇jvi + ∇ivj and 2ωij ≡ ∇jvi − ∇ivj . In Eq. (7) we have now inserted strain relaxation (the 1/τ
term) in order to describe correctly the simple fluid limit. We have switched to the new thermodynamic quantity
Ψtot

ij ≡ Ψij −∇kΨijk defined by the rewritten Gibbs relation

dε = Tds+ µdρ+ vidgi + ΨijdUij + Ψijkd∇kUij + χαidRαi + χαijd∇jRαi (9)

with Ψij = Ψji, Ψijk = Ψjik, χαiRαj = −χαjRαi and χαikRαj = −χαjkRαi.
The remaining equations of motion denote mass, momentum, and energy conservation

ρ̇+∇iρvi = 0 (10)
ġi +∇jσij = 0 (11)

ε̇+∇ij
(ε)
i = 0 (12)

with σij the stress tensor and j(ε)i the energy density current. The momentum density gi is equal to the mass current
ρvi. The Gibbs relation Eq. (9) can be used to replace Eq. (12) by the entropy balance

ṡ+∇ifi = R/T (13)

which is more convenient for nonlinear descriptions. The energy dissipation function R is positive (zero) for irreversible
(reversible) processes. This leads to the following expressions for the currents

Yα = µ(Rαk∇jΨtot
kj −∇kχ

tot
αk) + βαi∇iT (14)

fi = svi − κij∇jT − βαi(Rαk∇jΨtot
kj −∇kχ

tot
αk) (15)

σij = δijp+ vigj −Ψtot
ij + χtot

αjRαi − νijklAkl + 2Ψtot
ki Ujk + 1

2χ
tot
αk(UkiRαj + UkjRαi)

+Ψlkj∇iUlk + χαkj∇iRαk (16)

with χtot
αi ≡ χαi −∇jχαij . The result Eq. (16) for the stress tensor σij is valid to second order of the expansion Eq.

(A.4) in the strain, only. For completeness we also give the exact expression in terms of aα

σij = δijp+ vigj + ψαj∇iaα + ψαkj∇i∇kaα − (∇kψαkj)∇iaα − νijklAkl (17)

The entropy current fi contains entropy transport, heat conduction, and the cross-coupling to elasticity. The stress
tensor σij comprises the hydrostatic pressure p, defined by the Gibbs-Duhem relation

p = −ε+ Ts+ µρ+ vigi (18)

as well as momentum convection, three elastic and the viscous contributions.
The dynamic equations above are fully nonlinear in the symmetry- and thermodynamics-governed parts, but linear

(in the sense of linear irreversible thermodynamics) in the phenomenological, irreversible parts (nonlinearities enter
there implicitly through variable dependencies of the material parameters like temperature dependence of viscosities
etc.). The dynamic equations are now set-up in terms of the conjugate quantities. In order to close the system one
needs constitutive equations relating the conjugate quantities to the variables. These relations are completely static
in nature, since any time (or frequency dependence) has been taken care of explicitly by equations of motion. We find

δT =
T

CV
δs+

1
ραs

δρ+ λ
(T )
ij Uij (19)

δµ =
1

ρ2κs
δρ+

1
ραs

δs+ λ
(µ)
ij Uij (20)

Ψij = cijklUkl + dijklmn∇l∇kUmn + λ
(T )
ij δs+ λ

(µ)
ij δρ (21)

Ψijk = eijklmn∇lUmn (22)
χαi = fαβijkl∇j∇kRβl (23)
χαij = gαβijkl∇kRβl (24)

containing specific heat (CV ), compressibility (κs), heat expansion (αs), elastic (cαβij) and bending-elastic (d, e)
moduli, as well as cross couplings of thermal and mechanical degrees of freedom with elasticity. These equations are
linear in the deviations from equilibrium, but can be generalized into the nonlinear domain (e.g. nonlinear elasticity)
if necessary. Implicit nonlinearities are given by state dependence of the static susceptibilities. In case one neglects
inhomogeneous rotations χαi and χαij are zero, which simplifies Eqs. (7-16) considerably.
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Above we have established the general framework for the hydrodynamics of visco-elastic fluids starting with the
fields ∇iaα and switching to the Eulerian strain Uij and rotations Rαi. This was possible only within an expansion
into powers of the strain and we gave explicit equations up to quadratic nonlinearities. We will now specify and
simplify these equations for the case of isotropic polymers. First, the static and dynamic material tensors are of
rather simple forms

βαi = βRαi κij = κδij λ
(µ,T )
ij = λ(µ,T )δij and cijkl = c‖δijδkl + c⊥δikδjl (25)

where the latter form is also valid for the other fourth rank tensors νijkl and (1/τ)ijkl involving shear and bulk
viscosity (ν ‖, ν⊥) as well as transverse and longitudinal strain relaxation (1/τ⊥, 1/τ ‖). The sixth rank tensors d and
e in Eqs. (21,22) contain four, while f and g in Eqs. (23,24) have two coefficients. The latter do not contain any Rαi

factor (only δαβ), because of the antisymmetry conditions on Rαjχαi. As a consequence, the dynamic equation (8)
for Rαi is not needed for isotropic systems.

In the case of the (additional) approximation of neglecting diffusion compared to relaxation (i.e. setting β, µ, d, e,
f , and g to zero) the dynamic equations read

(
∂

∂t
+ vk∇k)Uij = Aij − (Ukj∇ivk + Uki∇jvk) (26)

−δij
(

(
3c ‖ + c⊥

τ ‖
+
c ‖

τ⊥
)Ukk + (

3
τ ‖

+
1
τ⊥

)(λ(T )δs+ λ(µ)δρ)
)
− c⊥
τ⊥
Uij

(
∂

∂t
+ vk∇k)gi = −gi∇kvk −∇i(p̃− ν ‖Akk) +∇j

(
ν⊥Aij + c⊥Uij (27)

+2Uij(c ‖Ukk + λ(T )δs+ λ(µ)δρ) + 2c⊥UikUjk

)
(
∂

∂t
+ vk∇k)s = −s∇kvk +∇j(κ∇j(

T

CV
δs+

1
ραs

δρ+ λ(T )Ukk)) +
R

T
(28)

(
∂

∂t
+ vk∇k)ρ = −ρ∇kvk (29)

For the hydrodynamic pressure p̃ we have ∇ip̃ = ∇ip−c ‖∇iUkk−λT∇is−λµ∇iρ with p, the thermodynamic pressure
defined in Eq. (18), while

R = R0 + (
1

2τ ‖
+

3
2τ⊥

)Ψ2
kk +

c⊥
τ⊥

ΨkkUkk +
c2⊥
2τ⊥

UijUij (30)

with Ψkk = c ‖Ukk + λT δs+ λµδρ and R0 the dissipation function of simple liquids.
Eqs. (26) and (27) are in a form that can be compared with the rheology literature. It turns out that Eq. (26) can be

written as D̂(U) = A, if the phenomenological currents are neglected, where D̂(∗) = (∂/∂t+~v·~∇)∗+(~∇~v)T ·∗+ ∗·(~∇~v)
is the upper convected derivative. For Eq. (27) no such simple form of the convective nonlinearities is found. It should
be recalled, however, that the present formulation is restricted to quadratic nonlinearities in the strain (but see Note
Added in Proof). We are therefore lead to the conclusion that previous descriptions (Truesdell 1962, Noll 1958b,
Larson 1988, Bird et al. 1977, Oldroyd 1950, Giesekus 1966), which allowed upper and lower convected derivatives
or the Jaumann derivative and others of Uij or σij , are not suitable to describe the nonlinear macroscopic behavior
of non-Newtonian liquids such as polymer melts. Or to phrase it differently: if one is interested in a hydrodynamic
approach to the nonlinear description of systems with slowly relaxing quantities, only Eq. (3) derived in the present
manuscript can be used as a starting point. It should also be kept in mind that the convective-type nonlinearities are
not the only ones possible and that for a realistic description of the rheological behavior of complex fluids additional
slowly relaxing variables (other than strains and rotations) are necessary (Pleiner and Brand 1999).

In anisotropic fluids the material tensors – as measured in the laboratory frame – depend on the orientation of the
material. It is therefore necessary to know the (time evolution of the) rotation matrix Rαi that transforms real space
quantities into those of the reference space, since material properties are defined in reference space.

In addition, in an anisotropic visco-elastic fluid (like, e.g., liquid crystalline polymers) there are additional degrees
of freedom related to the broken orientational symmetry (and others, cf. Pleiner and Brand 1991, 1992). The nature
of such variables depends on the actual symmetry of the phase. Here we do not want to go into these details, but only
mention that quantities like the stress tensor become even more complicated when the additional degrees of freedom
are taken into account.

Acknowledgements: H.R.B. thanks the Deutsche Forschungsgemeinschaft for partial support of his work through
the Sonderforschungsbereich 481: Polymere und Hybridmaterialien in inneren und äußeren Feldern.



5

III. APPENDIX: ELASTICITY

In this appendix we follow quite closely recent work on the nonlinear hydrodynamics of crystals (Temmen et al.
2000). A proper description relies on two coordinates: the actual spatial coordinate r, specifying a point in an elastic
body, and the coordinate a this point possesses in the absence of any stresses. More carefully, starting from a stress-
free elastic body, we consider a point at the initial coordinate a. As the body is displaced, rotated, compressed and
sheared, the given point is displaced to r, especially in soft matter generally rather different from a. Since all points
of the body have a unique pair of a and r, the function r(a) is unique and invertible, the result of which we denote
as a(r) . For brevity, we shall refer to all r as the real space, and to all a as the reference space.

Despite its prevalence, the Lagrangian description is not the appropriate one when dealing with dynamics of strongly
deformable systems. This is because we choose, even need, to express our physics in local terms. In particular, the
state variables characterizing the elastic body (such as the temperature T and the chemical potential µ) must be taken
as functions of the real space coordinates r rather than of the reference space coordinates a. Consider for instance
the diffusive heat current, which is clearly along ∇kT (r) in an isotropic medium, and not along ∂T (a)/∂ak. Similarly,
with g as the momentum density, the angular momentum density is r× g rather than a× g.

Consistency also forces us to take a strain tensor that is a function of r. Following Chaikin and Lubensky (1995),
we therefore employ the (Eulerian) strain tensor, introduced via dr2i − da2

i (r) = 2Uikdridrk, where Uik = 1
2 [∇kui +

∇iuk − (∇iuj)(∇kuj)]. Remarkably, we may skip the detour over the displacement vector u, and write the proper
strain tensor directly as

Uik = 1
2 [δik − (∇kaα)(∇iaα)]. (A.1)

The elastic energy is independent of the orientation of the unstressed body, and we are quite free to take an arbitrary
rotation of the reference space with respect to the real space. Therefore, we must treat a and r as vectors of two
different spaces, and a quantity such as ∇iaα ≡ ∂aα/∂ri – instead of being a second rank tensor – is in fact a vector
both in real and reference space. We shall emphasize this fact here by using Latin and Greek indices to denote the
components in real and reference space, respectively. (So the displacement ri − aα is indeed an oxymoron. Similar
problems are associated with the Lagrangian strain tensor, which is neither completely in real nor completely in
reference space.)

It is useful to separate the two pieces of information contained in ∇iaα: the local strain and the local orientation.
The polar decomposition theorem (Noll 1958b) states

∇iaα = RαjΞij , (A.2)

where Rαj is the rotation matrix that rotates the local preferred directions in real space back to the global ones in
reference space, while the symmetric matrix Ξij deviates from δij only for finite strains. To understand this formula,
first consider the strainless case Ξij = δij . Because of daα = (∇iaα)dri with da2

α = dr2i , the gradient ∇iaα is indeed
the rotation matrix Rαj characterized above (with RαjRαk = δjk). For finite strains, Eq. (A.1) implies

δij − 2Uij = (∇iaα)(∇jaα) = RαkΞik RαlΞlj = ΞikΞkj , (A.3)

and we deduce

Ξij =
√
δij − 2Uij ≈ (δij − Uij − 1

2UikUkj . . .), (A.4)

where the expansion is valid for small strains Uij , but arbitrary Rαj .
The equation of motion for aα is

ȧα + vk∇kaα + Yα = 0. (A.5)

In equilibrium, Yα = 0 and the equation of motion d
dtaα ≡ ( ∂

∂t + vj∇j)aα = 0 states the simple fact that the (initial)
coordinate aα of a mass point does not change when one moves with it. Yα contains in general dissipative as well as
reversible contributions.

From the definition Eq. (A.1) the equation of motion for Uij follows unambiguously

d
dtUij −Aij = [ 12Rαi∇jYα − Ukj∇ivk] + [i↔ j] (A.6)

which for finite ∇jYα is not independent of Rαi.
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Another useful notation for the strain (Temmen 1997) is 2εαβ ≡ δαβ − (∇iaα)(∇iaβ), or εαβ = RαiRβjUij . Being a
tensor in the reference space, it is invariant under a real space rotation. Again one can split up ∇iaα = RβiΣαβ into
rotations and a symmetric matrix Σαβ describing strains. From

δαβ − 2εαβ = (∇iaα)(∇iaβ) = RγiΣαγRδiΣβδ = ΣαγΣβγ (A.7)

one gets the approximate expansion of Σαβ

Σαβ ≈ δαβ − εαβ −
1
2
εαγεγβ + . . . (A.8)

in terms of the invariant strain tensor. For the latter the dynamic equation follows from Eq. (A.5)

ε̇αβ + vk∇kεαβ −Aik(∇iaβ)(∇kaα)− 1
2
[(∇iaβ)(∇iYα) + (∇iaα)(∇iYβ)] = 0 (A.9)

Clearly, the dynamics of the symmetric εαβ depends on the total, non-symmetric ∇iaα, reflecting the coupling
between strains and rotations, especially in the nonlinear regime. In other words, the dynamic equation for εαβ (as
well as for Uij) is not closed, and one generally also needs the equation for Rαi, to be distilled from Eq. (A.5).

Note Added in Proof: In Eq. (26) the upper convected form of the time derivative is valid to any order in the strain
expansion.
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