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Introduction
Motivated by puzzling experimental observations made in compounds composed of banana-

shaped molecules, we investigate the symmetries and the physical properties of liquid crystalline
columnar phases with a macroscopic polarization in achiral materials [1]. This study is driven
by two key observations made for the still poorly understood B7 phase: a) freely suspended
films decompose spontaneously into strands [2, 3] and b) several of the textures observed for
the B7 phase are reminiscent of textures observed for liquid crystalline columnar phases. Quite
recently more experimental evidence was presented [4] for the B7 phase to be columnar.

One of the main results of our analysis [1] is that a chiral phase of C1-symmetry results
as soon as the macroscopic polarization is inclined with respect to the columnar axes and the
2D lattice directions. We argue that a chiral columnar phase composed of achiral molecules,
not previously considered for classic columnar phases, is sufficient to account for many of the
unusual physical properties of B7.

Recent experiments on the effect of an external electric field and of temperature variations
have also revealed the occurrence of flow close to and in the isotropic phase near the B7 -
isotropic phase transition [5]. Consequently, there is a need to look for models which can
describe phases that are optically isotropic but not cubic and can show coupling effects between
flow and electric fields and/or temperature gradients.

We discuss this [6] for the optically isotropic tetrahedratic phase characterized by a third
rank tensor order parameter Tijk [7]. We point out that an applied electric field or an applied
temperature gradient will lead to flow. Reciprocally we predict that, for example, a shear flow
applied to a tetrahedratic phase leads to an induced electric field and a temperature gradient.

The hexagonal and rectangular columnar banana phases
Columnar liquid crystal phases are 2-dimensional arrays of columns made of disk-like mole-

cules [8, 9]. The 2-dimensional lattice is either hexagonal or rectangular characterized by two
directions, l1,2. The column axis will be called k. Without a macroscopic polarization, P , the
planes built of k/l1,2 and l1/l2 are mirror planes. The directions perpendicular to these planes
are (at least 2-fold) symmetry axes (there can also be 4- and 6-fold axes). Thus these classical
columnar phases, Colh and Colr, are of D2h (sometimes D4h and D6h) symmetry. We only
consider structures without long-range positional order in the columns, i.e. a 2D crystalline
and a 1D fluid behavior.

The symmetry of these phases is reduced when a macroscopic polarization P is present. As
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Table 1: This table shows the symmetries and the physical properties of the classical columnar
phases without a macroscopic polarization as well as those of the novel phases discussed here.
k, l1, and l2 are the column axis, and the preferred directions of the 2D lattice, respectively.

class sym- polarization P 2D first-rank tensor
metry lattice

Colh D6h none hex none
Colr D2h none rect none
ColP h C6v parallel to k hex 1D along k
ColP h2 C2v parallel to l1 or l2 hex 1D along l1 or l2
ColP h1 C1h in the k/l1, k/l2, or l1/l2 plane, hex 2D in the plane

but oblique to k, l1, and l2
ColP r C2v parallel to k rect 1D along k
ColP r2 C2v parallel to l1 or l2 rect 1D along l1 or l2
ColP r1 C1h as in ColPh1 rect 2D in the plane
ColP i2 C2 parallel to l1 or l2 any 1D along l1 or l2
ColP i C1 inclined to any of the planes any 3D any

k/l1, k/l2, or l1/l2 orientation

long as P lies in one of the planes k/l1,2 or l1/l2, this plane still is a mirror plane, while axes
perpendicular to this plane are no longer symmetry axes. Such phases are of C1h symmetry
and called [1] ColPh1 and ColPr1 for the hexagonal and rectangular case, respectively. They are
of the same symmetry as the CB1 smectic banana phase [10, 11].

If in addition P is parallel to one of the preferred axes, l1,2 or k, this axis is a symmetry
axis (lying within the symmetry plane) of 2-fold (or 4- and 6-fold) symmetry. The resulting
columnar banana phases are of C2v (C6v) symmetry and called ColPx and ColPx2 for P ‖ k and
P ‖ l1,2, respectively (x stands for h, hexagonal and r, rectangular lattice symmetry). The
phases ColPi and ColPi2 are discussed in the following section.

With a hexagonal lattice an arrangement that is antiferroelectric in all 3 lattice directions
is not possible. Fig.1 shows the essential frustration by some examples.

Figure 1: Hexagonal columnar phases with the polarization up (full circles) and down (open
circles) the columnar axes. All horizontal rows are antiferroelectric, but different ”stacks” lead
additionally to a) 2 double-periodic antiferro-, b) 1 ferro- and 1 antiferro-, and c) 1 triple-
periodic antiferro- and 1 ferri-electric (2 up and 1 down and vice versa) direction at π/6.
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The inclined columnar banana phase
The phases discussed in the preceding section are non-chiral, since they possess at least a

mirror plane. Thus, they cannot be candidates for explaining the B7 phase, which experimen-
tally clearly shows chiral character. This situation is different when we go to the most general
case, the ColPi phase with C1 symmetry, where the polarization P is inclined relative to any of
the planes k/l1,2 and l1/l2 (Fig.2 of [1]). It has the same symmetry as the CG phase possible for

Figure 2: The local structure of the ColPi phase for disk-shaped objects with k the column
axis, P the macroscopic polarization perpendicular to the disk axis n, and l1,2 the non-polar
symmetry directions in the planes of 2D positional order. P is not parallel to l1orl2. The ColPi

phase has no mirror plane and is, therefore, chiral.

smectic phases formed by banana-shaped molecules [10]. The ColPi phase is chiral as is man-
ifest by the existence of a pseudoscalar: with the polarization P = P0p̂ (P0 is the magnitude
and p̂ the direction of the polarization) the scalar q̃ = [p̂ · (k × l1)] [p̂ · (k × l2)] [p̂ · (l1 × l2)]
changes sign under spatial inversion. For p̂ → −p̂ the chirality changes from, say, right- to
left-handed. The chirality can, but need not, show up in helical structures which would be
right- as well as left-handed (ambidextrous chirality), since the structure is made of achiral
molecules. Thus it emerges that tilted columnar phases with a polarization and C1 symmetry
are a natural candidate for B7. It is a columnar structure whose symmetry cannot be further
lowered when anti-ferroelectric aspects are included.

Because ColPi possesses a polar vector, it has interesting macroscopic electric and elec-
tromechanical properties. In the free energy they show up as

Φ =
∫

dτ [εE
ijEiEj + PiEi + Ei(ζ

T
i δT + ζp

i δp + ζc
i δc) + dijkEi∇juk + χ

(2)
ijkEiEjEk] (1)

where the contribution ∼ εE
ij is the usual dielectric term with six independent coefficients for

triclinic (C1) symmetry [12]. The next term is characteristic of all ferroelectric materials. The
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terms ∼ ζT
i , ζp

i and ζc
i relate to pyroelectric effects, pressure electric effects and to an electric

response resulting from a concentration change in mixtures. The second last term in Eq.(1) is
related to piezoelectric effects coupling the electric field to in-plane deformations of the lattice
built by the columns. This results in 9 independent piezoelectric constants for C1 symmetry.
In addition to these linear electric and electromechanical effects, the last term describes second
harmonic generation, where χ

(2)
ijk contributes 10 independent coefficients.

Assuming that the orientation of the entities, which form the columns, are not only char-
acterized by the polarization P , but in addition by a (non-polar) direction n (which can be
viewed as the normal of disk-like objects and which can be taken as perpendicular to P ), then
the ColPi is easily realized by a single tilt of the disks: If P is not along one of the lattice
axes l1,2 (Fig.2) a C1-symmetric structure arises.1 We note one important difference in this
respect between smectic and columnar phases. For columnar phases, tilting the disk-shaped
objects once is sufficient to reach the lowest symmetry level, while in the smectic CG phase,
banana-shaped molecules are tilted twice, i.e. about two different orthogonal axes.

It should be noted however, that the homogeneous state as depicted in Fig.2 might not be
the true ground state of that phase, because – due to the low C1 symmetry – there are a host of
possible first order gradient invariants in the free energy, allowing for spontaneous twist, splay
and splay-bend structures [13] possibly leading to textured and frustrated structures.

The tetrahedratic phase
In the tetrahedratic phase one has – in addition to the usual fields describing isotropic fluids

– a third rank tensor Tijk characterizing the tetrahedratic order. Note that we deal only with
the so-called nonchiral tetrahedratic phase, Td, made by achiral molecules. Tijk is symmetric
in all indices and traceless Tiik = 0, i.e. it does not contain any vectorial quantity. Since it
transforms under an l = 3 representation of spherical harmonics, it is odd under parity and
thus allows coupling terms not possible in ordinary simple liquids. It can be written as [7]
Tijk =

∑4
α=1 nα

i nα
j nα

k in terms of the 4 unit vectors nα
i that form a tetrahedron (

∑4
α=1 nα

i = 0).
A tetrahedron has no inversion symmetry and so does the tetrahedratic phase. In the absence
of any vector this requires a 3-rank tensor as order parameter. Since a 3-rank tensor cannot
influence the form of 2-rank material tensors, like the dielectric tensor, the tetrahedratic phase
appears to be isotropic optically. However, there are other material properties described by
higher-ranked tensors, like viscosity, where the non-isotropic nature of this phase becomes
manifest.

In addition, the existence of Tijk allows couplings described by 3-rank material tensors not
possible in ordinary isotropic phases. When comparing the tetrahedratic phase to an ordinary
isotropic phase in the dynamic regime, we have additional reversible contributions [6]

σR
ij = · · · − Γ1TijkEi − Γ2Tijk∇iT − Γ3Tijk∇ic (2)

je
i
R = · · ·+ Γ1TijkAjk (3)

jσ
i

R = · · ·+ Γ2TijkAjk (4)

jc
i
R = · · ·+ Γ3TijkAjk (5)

to the stress tensor, the electric, entropy, and concentration current, respectively. From in-
specting Eqs.(2–5), we see that velocity gradients (Aij)- including shear and extensional flows
- couple to electric fields (Ei) as well as to temperature and concentration gradients (∇iT and
∇ic).

1When P is parallel to l1 (or l2) a C2-symmetric phase (ColPi2) is obtained similar to the CB2 smectic
banana phases. In that case P is the 2-fold axis and q̃ = [p̂ · (k × n)] [p̂ · (k × l2)] [p̂ · (n × l2)].
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This leads to the simple experimentally testable predictions to enable a distinction between
the novel tetrahedratic phase and the usual isotropic liquid. Applying, for example, a simple
shear flow in the y − z-plane, that is Ajk = Sδjyδkz with the shear rate S, to a tetrahedratic
phase, we read off from Eq.(4) that this results in a reversible heat current of the form

jσ
i

R = Γ2TiyzS = Γ2
4S

3
√

3
δix (6)

using of the explicit form of Tijk [7]. This result shows that a shear flow applied in a given plane
leads to a heat current in the direction perpendicular to this plane. Analogously we obtain from
Eq.(3)

je
x

R = Γ1
4S

3
√

3
, je

y
R = 0 = je

z
R (7)

This demonstrates that there is, in addition to the heat current, also a reversible electric current
set up in the direction perpendicular to the shear plane. The same applies for the appearance of
a concentration current in mixtures: in a tetrahedratic phase a shear flow leads to a segregation
of the subspecies involved.

Reciprocally, one can apply an electric field or a temperature gradient (or a concentration
gradient) to a sample in the tetrahedratic phase and ask how the flow behavior is affected.
Applying, for example, an electric field E in the z–direction, one obtains for the only non-
vanishing component of the stress tensor (Eq.(2))

σR
yx = σR

xy = −Γ1
4Ez

3
√

3
(8)

This result shows that an electric field applied in a specific direction gives rise to a shear stress
in the plane perpendicular to this direction. And this shear stress can in turn lead for spatially
varying situations - via the dynamic equation for the linear momentum density or the velocity
field - to a flow in the plane perpendicular to the direction of the applied field. The same
applies to external gradients of temperature and concentration.

An important implication of the new reversible dynamic contributions discussed here, is
that the analysis of the electric Frederiks transition must include also dynamic effects. A
static analysis based on energy considerations only as that given in [7] is insufficient for the
tetrahedratic phase.

The B7 phase and its isotropic neighbor
In the last section we discussed how the new terms in the tetrahedratic phase coupling flow

to an external electric field as well as to temperature gradients could be experimentally detected.
Here we suggest that a good candidate for the tetrahedratic phase may be the isotropic liquid
state above the B7 phase for the following reasons.

First of all, we note that all experiments undertaken so far show, that the B7 phase has
several types of local order. This includes some degree of positional order, be it smectic or
columnar. Simultaneously, with the onset of translational order there is also an onset of orien-
tational order - typically characterized by the order parameter Qij, a traceless second rank
tensor [14, 15]. Therefore to describe the isotropic - B7 phase transition minimal ingredients
include order parameters for the onset of translational and orientational order, just as for the
only recently studied case of the smectic A - isotropic phase transition in Landau approximation
[16].

Second, the transition enthalpy observed at the B7 - isotropic transition [3,5] is comparable
to that typically obtained for isotropic - columnar phase transitions in other classes of low
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molecular weight materials including compounds made of pyramidic molecules [17]. This points
to the fact that major rearrangements in the degree of order take place at this transition.

Third, one observes pronounced dielectric behavior along with flow [5]. A completely open
question for the B7 phase is the role and importance of a macroscopic polarization, P . There
appears to be no conclusive experimental evidence as yet for the occurrence of a substantial
linear electro-optic effect.

The most significant similarity is clearly the response of the isotropic phase in the vicinity
of the isotropic - B7 phase boundary. Applying an electric field leads to hydrodynamic flow of
significant strength [5]. When the field is turned off, this flow subsides. The same is true for
temperature variations. When temperature changes are applied to a sample in the vicinity of
the isotropic - B7 phase transition, this leads again to a considerable amount of flow, which
stops after the temperature gradients have disappeared [5]. Such phenomena are not observed
at the phase transitions between the isotropic phase and a large number of other liquid crystal-
line phases including, for example, nematic, smectic A, smectic C, smectic B and hexagonal
columnar phases.

To decide unequivocally whether the isotropic phase above the B7 phase is actually a good
candidate for the tetrahedratic phase or not, two steps seem to be important. First, the nature
of the ordering in the B7 phase must be identified, in particular with respect to the existence
of a macroscopic polarization P . And second, it would be crucial to investigate in detail the
behavior of the isotropic phase above the B7 phase under external electric fields and temperature
gradients in the absence of the B7 phase.
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