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Abstract. We discuss general 2-fluid hydrodynamic equations for complex fluids, where one kind is a simple Newtonian fluid,
while the other is polymeric/elastomeric, thus being applicable to polymer solutions and swollen elastomers. The procedure
can easily be generalized to other complex fluid solutions. Special emphasis is laid on such nonlinearities that originate from
the 2-fluid description, like the transport part of the total time derivatives. It is shown that the proper velocities, with which the
hydrodynamic quantities are convected, cannot be chosen at will, since there are subtle relations among them. Within allowed
combinations the convective velocities are generally material dependent. The so-called stress division problem, i.e. how the
elastic stresses are distributed between the two fluids, is shown to depend partially on the choice of the convected velocities,
but is otherwise also material dependent. A set of reasonably simplified equations is given as well as a linearized version of
an effective concentration dynamics that may be used for comparison with experiments.

INTRODUCTION

The thermodynamic and hydrodynamic properties of
multi-component complex fluids are determined by the
microscopic degrees of freedom of their constituents and
the coupling between these degrees of freedom. Such
systems can exhibit rather rich phase behavior and dy-
namics, especially when one or more components is a
structured or macromolecular fluid [1]. Due in part to the
coupling of internal degrees of freedom, these systems
can also exhibit novel flow-induced structural evolution
phenomena, including shear-induced phase transforma-
tions and flow alignment of constituents on microscopic
to mesoscopic length scales. Such structural evolution
in turn leads to nonlinear rheological behavior, such as
stress overshoots in response to imposed rates of strain,
plasticity, and thixotropy.

Due to the overwhelming complexity of the micro-
scopic description of these systems, such a detailed
description is often not well suited for analysis of
the macroscopic dynamical behavior. Instead, explicit
macroscopic models have been developed for this pur-
pose. Some such models have been obtained by a suitable
coarse-graining procedure starting from a microscopic
theory. Others are purely phenomenological models con-
strained only by conservation laws, symmetry consider-
ations and thermodynamics. The so-called “two-fluid”
models for binary systems of distinct components or
phases are useful examples of such a macroscopic ap-

proach [2]. In the two-fluid description, each compo-
nent or phase is treated as a continuum described by lo-
cal thermodynamic variables (e.g. temperature, density,
and relevant order parameters), and dynamical quantities
(e.g. velocity or momentum). In general, these variables
for the constituents are coupled. For instance, the effec-
tive friction between components in a binary fluid mix-
ture leads to a drag force in the macroscopic description
that is proportional to the local velocity difference.

Two-fluid models have been employed in many dif-
ferent physical contexts. The two-fluid approach is a key
element of many traditional models for multi-phase flow
of bubbly liquids, fluid suspensions of particulates, and
binary mixtures of simple fluids [3]. Other examples in
condensed matter physics include two-fluid models for
superfluid helium [4], dynamics of plasmas [5], transport
in superconductors [6], viscoelasticity of concentrated
fluid emulsions [7], flow-induced ordering of wormlike
micelle solutions [8], flow of colloidal suspensions [9].
Two-fluid models have been used extensively to model
a wide range of dynamical phenomena in polymer so-
lutions and binary blends, including the hydrodynamic
modes of quiescent polymer solutions [10, 11], kinetics
of polymer dissolution [12], hydrodynamics and rheol-
ogy of polymer solutions and blends [13]-[19], and poly-
mer migration and phase separation under flow [20]-[27].

These examples share certain general features. In each,
two distinct species or coexisting phases (gas and liquid,
normal fluid and superfluid, polymer and solvent, meso-



gens and solvent etc.) with mass densitiesρ1 and ρ2,
which are conserved individually in the absence of chem-
ical reactions, move with distinct velocities~v1 and~v2, re-
spectively. Due to (usually strong) internal friction, the
momenta of the constituent species,ρ1~v1 andρ2~v2, are
not conserved individually. Of course, total momentum
is conserved. In most cases of fluid mixtures the friction
is so strong that the velocity difference~v1−~v2 is nonzero
for very short times only, i.e. it is a very rapidly relax-
ing quantity that is not included in the hydrodynamic
description for binary mixtures. However, there are sys-
tems and situations, where the relaxation of the relative
momenta is slow enough to have a significant influence
even on the hydrodynamic time scale. Then a two-fluid
description is appropriate and useful.

In this communication we focus on a general nonlin-
ear two-fluid description of complex fluids, where one
species is a viscous Newtonian fluid and the other a poly-
mer or elastomer. Emphasis is placed on the rigorous
derivation of the dynamic equations within the frame-
work of hydrodynamics as contrasted to ad-hoc treat-
ments. The resulting equations are rather general and
complicated. They can and have to be simplified for spe-
cial applications or systems by appropriate and well-
defined approximations. One of the advantages of start-
ing from the general theory is the possibility to identify
and characterize the approximations made. The hydrody-
namic method, described in some detail in [28]-[30], is
quite general and rigorous, being based on symmetries,
conservation laws, and thermodynamics.

The linear hydrodynamic description of a single com-
ponent elastic media has been given in [31], generalized
to the nonlinear domain in [32, 33], where in addition
the necessary steps are described when the elastic de-
gree of freedom is not constant (as in elastomers), but
decaying in time (as in viscoelastic media). In the follow-
ing sections, we provide a detailed analysis of two-fluid
models for isotropic polymers and elastomers (e.g. en-
tangled polymer solutions and gels) in a simple viscous
solvent. We close with a discussion of our general results
and their possible implications for experiments.

THERMODYNAMICS

The hydrodynamics of fluid mixtures as described above
is governed by conservation laws (individual masses,
total momentum and total energy), balance equations
for the liquid crystalline degrees of freedom, for the
transient elasticity of polymers and for the relaxation of
relative momentum. There are different ways of writing
the appropriate equations. One popular choice is to use
equations for individual mass densities and individual
momentum densities, another to use the mass density

and one concentration variable and the total momentum
density and the relative velocity difference. Since they
both have their advantages and disadvantages we will
present both ways of description, and show how they
are connected. We will use an isotropic elastomer (or
viscoelastic media) as the second, complex fluid.

The starting point of any macroscopic description is
the total energyE of the system as a function of all
the relevant variables. Since the energy is a first order
Eulerian form of the extensive quantities, we can write

E = ε V =
∫

ε dV (1)

= E(M1, M2, V, ~G1, ~G2, S, M2Ui j )

The masses,M1, M2 and momenta~G1, ~G2 of species 1
and 2 are related to the appropriate (volume) densities
by ρ1 = M1/V, ρ2 = M2/V, ~g1 = ~G1/V = ρ1~v1, ~g2 =
~G2/V = ρ2~v2, thus defining the two velocities~v1,2 whose

components we write asv(1,2)
i . The entropy density is

σ = S/V. The elastic degree of freedom of species 2 is
described by the Eulerian strain tensorUi j [32], which
is symmetric and often related to a displacement vector
~u by 2Ui j = ∇iu j + ∇ jui + (∇kui)(∇ku j). Introducing
thermodynamic derivatives (partial derivatives where all
other variables are kept fixed) we define temperatureT,
thermodynamic pressurep, chemical potentialsµ1, µ2
and velocities~v1,~v2 of the two fluids, as well as the
elastic stressΦi j conjugate to the elastic strain

T =
∂E
∂S

=
∂ε

∂σ
, µ1 =

∂E
∂M1

=
∂ε

∂ρ1
,

µ2 =
∂E

∂M2
=

∂ε

∂ρ2
p =−∂E

∂V
,

~v1 =
∂E

∂ ~G1
=

∂ε

∂~g1
, ~v2 =

∂E

∂ ~G2
=

∂ε

∂~g2

Φ′
i j =

∂E
∂ (M2Ui j )

=
∂ε

∂ (ρ2Ui j )
≡ ρ

−1
2 Φi j (2)

Expanding eq.(1) into first order differentials, the condi-
tion dV = 0 leads to an expression for the pressure

p =−ε +Tσ +ρ1µ1 +ρ2µ̄2 +~v1 ·~g1 +~v2 ·~g2 (3)

where we have introduced the effective chemical poten-
tial of the elastomer̄µ2 = µ2 + ρ−1Φi jUi j . In addition,
the differentials are related by the Gibbs relation

dε = Tdσ + µ1dρ1 + µ̄2dρ2 +~v1 ·d~g1 +~v2 ·d~g2

+Φi j dUi j (4)

From eqs.(3, 4) the expression for the differential pres-
sure results (Gibbs-Duhem relation) that is useful in



switching from pressure to chemical potentials or vice
versa

dp = σ dT +ρ1dµ1 +ρ2dµ̄2 +~g1 ·d~v1 +~g2 ·d~v2

−Φi j dUi j (5)

A second set of equations is obtained by switching to
the total density,ρ = ρ1 + ρ2, and the total momentum,
~g = ~g1 +~g2 = ρ1~v1 + ρ2~v2, which are the sums of the
original quantities and which are both conserved quan-
tities. The two-fluid nature has then to be represented
by additional variables. A natural choice seems to be the
use of the density and momentum differences. However
the latter choice is problematic, since it necessarily im-
plies the conjugate quantities also to be the (arithmetic)
sums and differences of the original conjugate quanti-
ties. Thus, the conjugate to~g would be~v1 +~v2, which
does not reflect correctly the possible one-fluid limits
ρ1 → 0 or ρ2 → 0. The physically acceptable conju-
gate to the total momentum is the mean velocity~v de-
fined by ρ−1~g. Insisting on~v, the mean velocity, to be
the conjugate of the total momentum~g, the choice of
the remaining variable describing the different veloci-
ties is severely limited. Compatibility with (4) allows as
variable only the velocity difference~w≡ ~v1−~v2 (with
~m≡ ρ−1ρ1ρ2~w as conjugate quantity) or more generally
α~w as variable withα−1ρ1ρ2ρ−1~w as conjugate, where
α can be freely choosen. There is no a-priori advantage
for any of the choices and we will stick toα = 1.1 From
~w =~g1/ρ1−~g2/ρ2 one gets

~v1 = ρ
−1~g+(1−φ)~w, ~v2 = ρ

−1~g−φ ~w (6)

The representation of the two different densities is less
problematic. A convenient choice for that variable is
the concentration,φ = ρ1/ρ, with ρ2/ρ = 1− φ . If the
expansion coefficients of the two fluids are the same,φ

can be interpreted as the volume fraction as well. Instead
of φ one could have used, e.g. the density difference
ρ1− ρ2 (or any other linear combination ofρ1 and ρ2
different fromρ) as variable without much change.

After some trivial algebra eqs.(3-5) can be written in
the new variables as

p = −ε +Tσ +ρµ +ρ
−1~g2 (7)

dε = T dσ +Π′dφ + µ dρ +~v·d~g+~m·d~w

+Φi j dUi j (8)

dp = σ dT +ρ dµ +~g·d~v−~m·d~w−Π′dφ

−Φi j dUi j (9)

1 The choiceα = ρ1ρ2ρ−1 would just interchange the roles of~w and
~m as variable and conjugate.

where we have introduced the relative pressureΠ′ and
the total chemical potentialµ

Π′ = ρ (µ1− µ̄2)+~w ·~g+ρ ~w2(1−2φ)≡ ρ Π
µ = µ1φ + µ̄2(1−φ)+~w2

φ(1−φ) (10)

or vice versa

µ1 = µ +ρ
−1

ρ2 (Π−~w ·~v1)
µ2 = µ−ρ

−1
ρ1 (Π+~w ·~v2) (11)

with the mean velocity~v and the weighted relative mo-
mentum~m given by

~v = φ~v1 +(1−φ)~v2 = ρ
−1(~g1 +~g2)

~m = ρ (1−φ)φ ~w = (ρ2~g1−ρ1~g2)ρ−1 (12)

The Gibbs relations connects variables that show
different rotational behavior. Energy, entropy, the
densities and the concentration are scalar quan-
tities that do not change under (rigid) rotations,
i.e. dε = dσ = dρ = dρ1 = dρ2 = dφ = 0. The
vectors and tensors are transformed according to

dv(1,2)
i = Ωi j v

(1,2)
j , dgi = Ωi j g j , dwi = Ωi j w j , dUi j =

Ω jkUik + ΩikUk j, where Ωi j = −Ω ji is any constant
antisymmetric matrix. The rotational invariance of the
Gibbs relation (4,8) then leads to the relation

UikΦk j = U jkΦki (13)

which has to be fulfilled by the conjugate quantities.
There are no contributions from the momenta and ve-
locities, since~g ‖~v, ~w ‖ ~m, and~g1,2 ‖~v1,2. Relation (13)
is useful for reformulating the total stress tensor (see be-
low), in particular to symmetrize it explicitly.

Having set up the thermodynamics of the relevant vari-
ables we are now in a position to establish the structure
of the dynamic equations.

SIMPLIFIED ELASTOMERIC
TWO-FLUID EQUATIONS

Recently we have derived the most general and complete
set of 2-fluid equations [34]. These equations are for
most purposes unnecessarily complicated and can be
simplified using reasonable assumptions. Starting from
the correct general equations such assumptions, clearly
spelled out, lead to controlled approximations and to a
set of 2-fluid equations, whose limitations and implicit
assumptions are clear and well defined in contrast to
most ad-hoc approaches.

Here we want to display explicitly 2-fluid hydrody-
namics under the following assumptions:
a) convection with natural velocities (forUi j , ~g2, ρ2 and



~g1, ρ1 this is~v2 and~v1, respectively );
b) the linearized elastic force acts on the elastomeric fluid
(index 2) only;
c) global incompressibility,δρ = 0 (i.e. δρ1 = −δρ2);
and
d) linearizing the phenomenological dissipative currents,
but keeping quadratic nonlinearities otherwise. Then the
following set of equations is obtained:
The incompressibility condition (in 3 equivalent ver-
sions),

0 = div~v (14)

0 = ~w ·~∇ρ1 +ρ1div~v1 +ρ2div~v2 (15)

0 = ~w ·~∇φ +φ div(1−φ)~w− (1−φ)divφ~w (16)

the concentration dynamics (in 3 equivalent versions),

φ̇ +∇i (φvi +φ(1−φ)wi)−di j ∇i∇ j(µ1− µ̄2)

−φ(1−φ)d(T)
i j ∇ j∇iT = 0 (17)

ρ̇1 +~v1 ·~∇ρ1 +ρ1div~v1−ρ di j ∇i∇ j(µ1− µ̄2)

−ρ1ρ2

ρ
d(T)

i j ∇i∇ jT = 0 (18)

ρ̇2 +~v2 ·~∇ρ2 +ρ2div~v2 +ρ di j ∇i∇ j(µ1− µ̄2)

+
ρ1ρ2

ρ
d(T)

i j ∇i∇ jT = 0 (19)

the entropy dynamics (heat conduction equation),

σ̇ +vi∇iσ +
β

ρ
∇i(ρ1ρ2wi)−κi j ∇i∇ jT

−ρ1ρ2

ρ
d(T)

i j ∇i∇ j(µ1− µ̄2) = 0 (20)

and the elasticity dynamics

U̇i j +v(2)
k ∇kUi j −

1
2
(∇ jv

(2)
i +∇iv

(2)
j )

−ρ1

2
(wi∇ j +w j∇i) ln

ρ2

ρ
+Uki∇ jv

(2)
k +Uk j∇iv

(2)
k

+ζl δi j Φkk+ζtr(Φi j −
1
3

δi j Φkk)−ξ1δi j ∆Φkk

−ξ2∆Φi j −ξ3(∇i∇ jΦkk+δi j ∇k∇l Φkl)
−ξ4(∇i∇kΦ jk +∇ j∇kΦik) = 0 (21)

Since elasticity is assumed to be related to fluid 2, the
linear and quadratic couplings to flow are related to ve-
locity~v2 only. The quadratic couplings are of the “lower
convected" type, well-known for the single fluid descrip-
tion [32] - [35] and are of great importance in the vis-
coelastic case. In addition, there are nonlinear couplings
to the concentration variable (the cubic one has been sup-
pressed), which are not possible in a 1-fluid description.
Theζ -terms describe relaxation of elastic strains and are

absent in a permanent network, where only the strain dif-
fusion terms (∼ ξ1,2,3,4) are present. Despite the global
incompressibility assumption div~v = 0, the trace of the
elastic tensor,Ukk, does not vanish even in linear order,
since neither div~v1 = 0, nor div~v2 = 0, nor div~w= 0, gen-
erally.

For the momentum balance of the two different species
we get

ρ1v̇(1)
i +ρ1v(1)

j ∇ jv
(1)
i +

ρ1

ρ
∇i(p+

1
2

ρ2w j(v1
j +v2

j ))

+
ρ1ρ2

ρ
∇i(µ1− µ̄2)+

ρ1

ρ
Φk j∇iUk j−ρ1Φi j ∇ j ln

ρ2

ρ

+
ρ1ρ2

ρ
β∇iT +ξ ρ1ρ2wi −ν

(1)
i jkl ∇ j∇l v

(1)
k

− ν
(12)
i jkl ∇ j∇l v

(2)
k = 0 (22)

ρ2v̇(2)
i +ρ2v(2)

j ∇ jv
(2)
i +

ρ2

ρ
∇i(p− 1

2
ρ1w j(v1

j +v2
j ))

− ρ1ρ2

ρ
∇i(µ1− µ̄2)−

ρ1

ρ
Φk j∇iUk j +ρ1Φi j ∇ j ln

ρ2

ρ

− ρ1ρ2

ρ
β∇iT−∇ jΦi j +∇ j(Φ jkUik +ΦikU jk)

− ξ ρ1ρ2wi −ν
(2)
i jkl ∇ j∇l v

(2)
k −ν

(12)
i jkl ∇ j∇l v

(1)
k = 0 (23)

The ξ -terms describe the coupling of the the two mo-
menta due to the difference of the two velocities (fric-
tion). Note that although we made the approximation that
the linear elastic stress does only act on fluid 2, there are
inevitably nonlinear contributions to fluid 1, too. There
is also a (nonlinear) coupling of fluid 1 to the concentra-
tion, if elastic distortions are present.

In order to facilitate actual calculations we also give
eqs.(22,23) as dynamic equations for the total momen-
tum and for the relative velocity

ρ v̇i +∇i p+∇ j

(
ρviv j +

ρ1ρ2

ρ
wiw j

)
+2∇ j(Φ jkUik)

− ∇ jΦi j −νi jkl ∇ j∇l vk−
ρ1ρ2

ρ
ν

(c)
i jkl ∇ j∇l wk = 0 (24)

ẇi +
(

v j +
ρ2−ρ1

ρ
w j

)
∇ jwi +ρξwi

+ ∇i

(
µ1− µ̄2 +~v·~w+

ρ2−ρ1

2ρ
~w2

)
+∇ j

1
ρ2

Φi j

+
1
ρ2

Φk j∇iUk j−
2
ρ2

∇ j(Φk jUik)

− ρ1ρ2

ρ
ν

(m)
i jkl ∇l ∇ jwk−ν

(c)
i jkl ∇ j∇l vk = 0 (25)

From (24) angular momentum conservation is obvious,
since the total stress tensor (defined byρ v̇i + ∇ jσi j = 0
in the incompressible limit) is symmetric due to the rela-
tion (13), if the viscosities are of the usual formνi jkl =



ν⊥(δikδ jl +δ jkδil − 2
3δi j δkl)+νbδi j δkl . Note that the vis-

cosities introduced in (22,23),ν
(1,2,12)
i jkl , are different from

νi jkl andν
(c,m)
i jkl used in (24,25).

In order to conserve the global incompressibility con-
dition for all times, i.e. div̇~v= 0, the pressure has to fulfill
the relation

∆p = −∇i∇ j (ρ1v(1)
i v(1)

j +ρ2v(2)
i v(2)

j )+∇i∇ jΦi j

−∇i∇ j (Φk jUik +ΦikU jk)+νi jkl ∇i∇ j∇l vk

+ρ1ρ2ρ
−1

ν
(c)
i jkl ∇i∇ j∇l wk (26)

In contrast to 1-fluid descriptions for simple fluids, where
the incompressibility condition leads to a considerable
mathematical simplification, this is no longer the case for
a 2-fluid description due the complicated form of (26),
even if incompressibility is a very good approximation
in physical terms. In particular,∆p is not only connected
to elastic compressions (Ukk), but also to shear deforma-
tions, even in linear order.

The static relations between the conjugate quantities
to the variables close the system of equations

δT = TC−1
V δσ +α

−1
φ

δφ +α
−1
3 Ukk (27)

Φi j = ctr(Ui j −
1
3

δi jUkk)+clUkk

+α
−1
3 δσ +ρ

−1
κ
−1
u δφ (28)

δ (µ1− µ̄2) = ρ
−1

κ
−1
φ

δφ +ρ
−1

α
−1
φ

δσ

+κ
−1
u Ukk (29)

with δφ = ρ−1δρ1 = −ρ−1δρ2. Note thatδ µ is not
needed, but follows fromδ p via eq. (5) or (9).

DISCUSSION

Within the general framework of hydrodynamics and
thermodynamics we have set up a consistent nonlinear
2-fluid description of complex fluids, in particular for
polymer solutions or swollen elastomers. Such a general
theory [34] determines the frame for any ad-hoc model,
which has to be a special case of the general one. The
comparison with the general theory also reveals implicit
and explicit assumptions, approximations and possible
generalizations of a given model. A “simple” or “natural”
choice in a given model may not be mandatory, but rather
imply a presumption.

Quite generally we find that neither the velocity, with
which a certain variable is convected, nor the stress di-
vision between the different fluids can be determined
by general principles, but is rather system or material
dependent. On the other hand, there are certain restric-
tions and interrelations among the convective velocities

and other physical effects that limit the possible choices.
For the two densitiesρ1, ρ2 e.g., the “natural” choice
for the convection velocities (taken in the preceding sec-
tion) seems to be their native velocities~v1 and~v2, re-
spectively. This implies that the total density is convected
with the mean velocity~v (as required by mass transport,
but manifest only, if the incompressibility assumption
is lifted), while the concentrationφ is convected with
(1/ρ)(ρ2~v1 + ρ1~v2). Another obvious (“simple”) choice
would be the mean velocity as convection velocity for
both, the total density as well as the concentration im-
plying that alsoρ1 andρ2 are convected with~v. However,
the actual convection velocity depends on the value of a
material dependent (reactive) flow parameter (call itγ)
and is not restricted to the two choices mentioned above
(γ = 0 and=−1 for the “natural” and the “simple” one).

In the case of visco-elastic and elastic media, which
are described by a dynamic equation for the (Eulerian)
strain tensorUi j , there are two velocities involved. One
is the usual convection velocity (vk∇kUi j ) and the other
one occurs in the "lower convected" part (Uk j∇ivk +
Uki∇ jvk). There is no fundamental reason for the two to
be equal, nor to be one of the obvious choices (~v or~v2).

For the evolution equations of the momenta special
care has to be taken to get a description, which is compat-
ible with general laws. The currents and quasi-currents
that enter the description in terms of either the total mo-
mentum and the velocity difference or in terms of the
two individual momenta are not the same comparing
eqs.(22, 23) with (24, 25). In particular, the momenta
~g1,2 are convected with~v1,2 implying that the total mo-
mentum~g and the relative velocity~w are convected with
~v and (1/ρ)(ρ2~v1 + ρ1~v2), respectively. Instead of this
“natural” choice there are other possibilities governed by
some phenomenological parameters (independent from
γ), e.g. the “simple” choice that all 4 quantities are con-
vected with~v. Even the convection of the entropy can
be tuned by choosing a parameterβ ≡ β0 + β00σ where
β00 = 1/ρ1, = 0,=−1/ρ2 leads to the convective veloc-
ity to be~v1,~v,~v2, respectively.

In the preceding section it was assumed that (linear)
elastic stress is carried only by fluid 2. Generally, how-
ever, the distribution of the elastic stress among the two
fluids is governed by a phenomenological coefficient
(call it λ (U)). For, respectively, 2λ (U) = 1/ρ2, = 0, or
= −1/ρ1, the elastic stress is carried only by fluid 2, is
equally distributed between 1 and 2, or carried only by
fluid 1; butλ (U) can have any value in between.

A prominent feature of the 2-fluid description is the
coupling of the concentration dynamics to the velocity
difference. Linearizing and Fourier transforming the dy-
namic equations, thus eliminating~w from e.g. the con-
centration dynamics and neglecting fourth order gradient



terms we get

iωφ −de f f∆Π− ρ1ρ2

ρ2 d(T)e f f∆T−2λ
(φ)∇i∇ jΦi j = 0

(30)
with frequency dependent effective diffusion and
thermo-diffusion coefficients

de f f = d+
ρ1ρ2

ρ2

(γ +1)2

ρ ξ + iω
(31)

d(T)e f f = d(T) +
β (γ +1)
ρ ξ + iω

(32)

and the dynamic coupling to the elastic degree of free-
dom by

λ
(φ) =

ρ1ρ2

ρ
λ

(U) 1+ γ

ρξ + iω
(33)

where the dispersion step aroundω ≈ ρ ξ is due to the
friction (∼ ξ ) between the two fluid momenta. Again
these possible additions to the concentration dynamics,
however, depend on the choices for the convection ve-
locities (i.e. onγ andβ ) as well as on the way how the
elastic stress has been divided among the two fluids (on
λ (U)). E.g. if the stress is equally distributed among the
2 fluids and if both densities are convected with~v, there
are no frequency dependent additions to the concentra-
tion dynamics at all.

Recently, 2-fluid descriptions of diffusion in poly-
meric systems have been given [36, 37] based on the
GENERIC approach making use of Poisson brackets. A
detailed comparison with these formulations is beyond
the scope of this manuscript and will be discussed else-
where.
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