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Abstract. We discuss general 2-fluid hydrodynamic equations for complex fluids, where one kind is a simple Newtonian fluid,
while the other is polymeric/elastomeric, thus being applicable to polymer solutions and swollen elastomers. The procedure
can easily be generalized to other complex fluid solutions. Special emphasis is laid on such nonlinearities that originate from
the 2-fluid description, like the transport part of the total time derivatives. It is shown that the proper velocities, with which the
hydrodynamic quantities are convected, cannot be chosen at will, since there are subtle relations among them. Within allowed
combinations the convective velocities are generally material dependent. The so-called stress division problem, i.e. how the
elastic stresses are distributed between the two fluids, is shown to depend partially on the choice of the convected velocities,
but is otherwise also material dependent. A set of reasonably simplified equations is given as well as a linearized version of
an effective concentration dynamics that may be used for comparison with experiments.

INTRODUCTION proach [2]. In the two-fluid description, each compo-
nent or phase is treated as a continuum described by lo-
The thermodynamic and hydrodynamic properties ofcal thermodynamic variables (e.g. temperature, density,
multi-component complex fluids are determined by theand relevant order parameters), and dynamical quantities
microscopic degrees of freedom of their constituents ande.g. velocity or momentum). In general, these variables
the coupling between these degrees of freedom. Suctor the constituents are coupled. For instance, the effec-
systems can exhibit rather rich phase behavior and dytive friction between components in a binary fluid mix-
namics, especially when one or more components is &ure leads to a drag force in the macroscopic description
structured or macromolecular fluid [1]. Due in part to the that is proportional to the local velocity difference.
coupling of internal degrees of freedom, these systems Two-fluid models have been employed in many dif-
can also exhibit novel flow-induced structural evolution ferent physical contexts. The two-fluid approach is a key
phenomena, including shear-induced phase transformalement of many traditional models for multi-phase flow
tions and flow alignment of constituents on microscopicof bubbly liquids, fluid suspensions of particulates, and
to mesoscopic length scales. Such structural evolutiotinary mixtures of simple fluids [3]. Other examples in
in turn leads to nonlinear rheological behavior, such axondensed matter physics include two-fluid models for
stress overshoots in response to imposed rates of straiayperfluid helium [4], dynamics of plasmas [5], transport
plasticity, and thixotropy. in superconductors [6], viscoelasticity of concentrated
Due to the overwhelming complexity of the micro- fluid emulsions [7], flow-induced ordering of wormlike

scopic description of these systems, such a detailedicelle solutions [8], flow of colloidal suspensions [9].
description is often not well suited for analysis of Two-fluid models have been used extensively to model
the macroscopic dynamical behavior. Instead, explicita wide range of dynamical phenomena in polymer so-
macroscopic models have been developed for this purutions and binary blends, including the hydrodynamic
pose. Some such models have been obtained by a suitabi@des of quiescent polymer solutions [10, 11], kinetics
coarse-graining procedure starting from a microscopiof polymer dissolution [12], hydrodynamics and rheol-
theory. Others are purely phenomenological models conegy of polymer solutions and blends [13]-[19], and poly-
strained only by conservation laws, symmetry considermer migration and phase separation under flow [20]-[27].
ations and thermodynamics. The so-called “two-fluid” These examples share certain general features. In each,
models for binary systems of distinct components ortwo distinct species or coexisting phases (gas and liquid,
phases are useful examples of such a macroscopic apormal fluid and superfluid, polymer and solvent, meso-



gens and solvent etc.) with mass densifigsand p,,  and one concentration variable and the total momentum
which are conserved individually in the absence of chemdensity and the relative velocity difference. Since they
ical reactions, move with distinct velocitigs andvs,, re- both have their advantages and disadvantages we will
spectively. Due to (usually strong) internal friction, the present both ways of description, and show how they
momenta of the constituent specigsy; and p,V,, are  are connected. We will use an isotropic elastomer (or
not conserved individually. Of course, total momentumviscoelastic media) as the second, complex fluid.

is conserved. In most cases of fluid mixtures the friction The starting point of any macroscopic description is
is so strong that the velocity differengg— Vi is nonzero  the total energyE of the system as a function of all
for very short times only, i.e. it is a very rapidly relax- the relevant variables. Since the energy is a first order
ing quantity that is not included in the hydrodynamic Eulerian form of the extensive quantities, we can write
description for binary mixtures. However, there are sys-

tems and situations, where the relaxation of the relative E = gV= / edv (1)
momenta is slow enough to have a significant influence - o
even on the hydrodynamic time scale. Then a two-fluid = E(M1,M2,V, Gy, Gy, S MaUjj)

description is appropriate and useful.

In this communication we focus on a general nonlin-The massesM;, M, and momenta@l, G, of species 1
ear two-fluid description of complex fluids, where one and 2 are related to the appropriate (volume) densities
species is a viscous Newtonian fluid and the other a polyby p; = My/V, po = Ma/V, G1 = G1/V = p1Vy, G2 =

mer or elastomer. Emphasis is placed on the rigorouss, \/ — p,v,, thus defining the two velocitie  whose
derivation of the dynamic equations within the frame- components we write a (12) The entropy density is
work of hydrodynamics as contrasted to ad-hoc treat- — S/V. The elastic degree.of freedom of species 2 is

ments. The resulting equations are rather general an . ; : .
; . escribed by the Eulerian strain tensdy [32], which
complicated. They can and have to be simplified for spe- ; .

) o . is symmetric and often related to a displacement vector
glafl a%pllcatlons or systems b%/ rf\ppr(;;pnate andfwell-U b§ 25 = Ciu; + Oyui + (Dkui)(Dkuj)p ntroduting
efined approximations. One of the advantages of start; X S 4 A
ing from the general theory is the possibility to identify tthermodynamlc derivatives (partial derivatives where all

and characterize the approximations made. The hydrodyOther variables are kept fixed) we define temperalyre

namic method, described in some detail in [28]-[30], js (nermodynamic pressur, chemical potentialgu, u»

. . . .~ and velocitiesvy, V, of the two fluids, as well as the
quite general and rigorous, being based on symmetries

. . €lastic stres®j; conjugate to the elastic strain
conservation laws, and thermodynamics.

The linear hydrodynamic description of a single com- JE  os JE oe

ponent elastic media has been given in [31], generalized T = 35~ 95" U1 = M. 9p0
to the nonlinear domain in [32, 33], where in addition °c 1 9p1
the necessary steps are described when the elastic de- L = oE _ e p=— JE
gree of freedom is not constant (as in elastomers), but oMz dp2 oV’
decaying in time (as in viscoelastic media). In the follow- JE de JE de
ing sections_, we prpvide a detailed analysis of two-fluid io= 97@1 = G 2= Téz = 02
models for isotropic polymers and elastomers (e.g. en- 3
. . ) ; , E de 4

tangled polymer solutions and gels) in a simple viscous !, = = = o 2

ith 2 discussi 1T S(MUy) T alpaly) P2 T
solvent. We close with a discussion of our general results (M2Usij) (p2Uij)

and their possible implications for experiments. Expanding eq.(1) into first order differentials, the condi-

tion dV = 0 leads to an expression for the pressure
THERMODYNAMICS p=—e+To+pius+p2u2+V1-G1+V2-G2  (3)

The hydrodynamics of fluid mixtures as described abovavhere we have introduced the effective chemical poten-
is governed by conservation laws (individual massestial of the elastomep, = u2+p‘1¢ijuij. In addition,
total momentum and total energy), balance equationshe differentials are related by the Gibbs relation

for the liquid crystalline degrees of freedom, for the B

transient elasticity of polymers and for the relaxation of d¢ = Tdo +u1dp1+ updp2 + Vi -dgs + V2 - dgp
relative momentum. There are different ways of writing +@jj dUj; (4)

the appropriate equations. One popular choice is to use

equations for individual mass densities and individualFrom egs.(3, 4) the expression for the differential pres-
momentum densities, another to use the mass densisure results (Gibbs-Duhem relation) that is useful in



switching from pressure to chemical potentials or vicewhere we have introduced the relative presdifeand

versa the total chemical potential
dp = odT+pidus+p2duz+0i-dvi + 0z - dv; N = p(u—f)+W-g+pW(1-2¢)=pn
—®ij dUj; (5) Bo= e+ ia(l-9)+Wo(l—9) (10)

A second set of equations is obtained by switching toor vice versa
the total densityp = p1 + p2, and the total momentum, 1 -
g = 01+ T2 = p1V1 + p2¥, which are the sums of the p = p+p p2(M—W-vy)
original quantities and which are both conserved quan- U = U fp‘lpl(l'l +W- V) (12)
tities. The two-fluid nature has then to be represented
by additional variables. A natural choice seems to be th&vith the mean velocity and the weighted relative mo-
use of the density and momentum differences. Howevefentumm given by
the latter choice is problematic, since it necessarily im- 1
plies the conjugate quantities also to be the (arithmetic) Vo= ¢Vt (1-9)V2=p (G +02)
sums and differences of the original conjugate quanti- m = p(l—¢)pW=(pog1—p1G2)p * (12)
ties. Thus, the conjugate ®would beV; + V,, which ] . )
does not reflect correctly the possible one-fluid limits The Gibbs relations connects variables that show
p1 — 0 or p» — 0. The physically acceptable conju- d|ffer_e_nt rotational behavior. _Energy, entropy, the
gate to the total momentum is the mean veloditge- ansmes and the concentration are scalar quan-
fined by p~1g. Insisting onv, the mean velocity, to be lities that do not change under (rigid) rotations,
the conjugate of the total momentugy the choice of 1. de¢ = do = dp = dp; = dp2 = d¢ = 0. The
the remaining variable describing the different veloci-Vectors and tensors are transformed according to
ties is severely limited. Compatibility with (4) allows as dvi(l’z) = QijV%LZ), dg = Qijgj, dw = Qjjw;, dU;j =
variable only the velocity differenc& = V1 — Vo (with QUi + QikUkj, where Qjj = —Qji is any constant
m= p~1p1p,W as conjugate quantity) or more generally antisymmetric matrix. The rotational invariance of the
aw as variable withoe~1p;1pop W as conjugate, where Gibbs relation (4,8) then leads to the relation
a can be freely choosen. There is no a-priori advantage
for any of the choices and we will stick = 1.X From Uik@kj = UjkPxi (13)

W=G1/p1=Gz/p2 One gets which has to be fulfilled by the conjugate quantities.

_ 51 ) — 51 7 There are no contributions from the momenta and ve-
W=pg (oW, Ve=pTd-¢w  (6) locities, sinced || V, W || M, anddy 2 || V1 2. Relation (13)

The representation of the two different densities is lesds useful for reformulating the total stress tensor (see be-

problematic. A convenient choice for that variable is low), in particular to symmetrize it explicitly.

the concentrationy = p1/p, with p2/p = 1— ¢. If the Having set up the thermodynamics of the relevant vari-

expansion coefficients of the two fluids are the saine, ables we are now in a position to establish the structure

can be interpreted as the volume fraction as well. Instea@f the dynamic equations.

of ¢ one could have used, e.g. the density difference

p1— p2 (or any other linear combination @f, and p,

different fromp) as variable without much change. SIMPLIFIED ELASTOMERIC

After some trivial algebra egs.(3-5) can be written in TWO-FLUID EQUATIONS
the new variables as

Recently we have derived the most general and complete

p = —e+To+pu+p g’ ) set of 2-fluid equations [34]. These equations are for
de = Tdo+N'dg+udp+V-dg+m-dw most purposes unnecessarily complicated and can be
+dj; dU;; (8) simplified using reasonable assumptions. Starting from
dp = odT+pdu+g-dv—m-dw—n’'de the correct general equations such as_sumptions, clearly
o dU; ) spelled out, lead to controlled approximations and to a
j Ui

set of 2-fluid equations, whose limitations and implicit
assumptions are clear and well defined in contrast to
most ad-hoc approaches.

! The choicea = p1pop~* would just interchange the roles &fand Here we want to display explicitly 2-fluid hydrody-
mas variable and conjugate. namics under the following assumptions:

a) convection with natural velocities (fakj, d», p» and




01, p1 this isV, andvy, respectively ); absent in a permanent network, where only the strain dif-
b) the linearized elastic force acts on the elastomeric fluidusion terms € &1 34) are present. Despite the global

(index 2) only; incompressibility assumption div= 0, the trace of the
c) global incompressibilitydp = 0 (i.e. 6p1 = —8p2);  elastic tensoiJyk, does not vanish even in linear order,
and since neither divy = 0, nor diw, = 0, nor diviv = 0, gen-

d) linearizing the phenomenological dissipative currentsgerally.
but keeping quadratic nonlinearities otherwise. Then the For the momentum balance of the two different species

following set of equations is obtained: we get
The incompressibility condition (in 3 equivalent ver- 1
sions), prvV +P1V,-(1)Djvi<1) + %Di(p+ SP2Wj (Vi +v9))
0 = divv 14 _
i | . O P20 )+ Py DU — pay O n 22
0 = W-Upy+ p1divVy + podivv, (15) p p p
0 = W-Op+ddiv(l—o)i—(1—9¢)divow (16)  + %ﬁm +&prpaw — vim OO
the concentration dynamics (in 3 equivalent versions), — _ Vigiﬁ)mj ov? =0 (22)
PR oA D<iT>Dj o) P2 4 p2v POy + %Di(p* %lej' (v +))
—¢(1-9¢)d; 'O;0T=0 (17) _
) - ) ! _ - plpZDi(,ul_/le)_&q)kj[liukj‘FPl(Diijln&
p1+V1-Op1 + padiviy — p dij 00 (11 — p2) p p p
—%di(jT)DiDszo (18) - %ﬁDiT—quJij+Dj(¢jkuik+¢ikujk)
P2+ 2 Opz + p2divi + p o 050 (w1 — f2) — Ep1pawi — Vg 007 — v 0O =0 (23)

PiP2 (T)— .1 _ . .
+Tdij OOT=0 (19  The &-terms describe the coupling of the the two mo-

menta due to the difference of the two velocities (fric-

the entropy dynamics (heat conduction equation), tion). Note that although we made the approximation that
5 the linear elastic stress does only act on fluid 2, there are

&+vidio + = 0i(p1pow) — i D50 T !neV|tany non!mear COﬂtrI'bUtIOHS tp fluid 1, too. There

p is also a (nonlinear) coupling of fluid 1 to the concentra-

tion, if elastic distortions are present.
In order to facilitate actual calculations we also give
egs.(22,23) as dynamic equations for the total momen-

P00 ) =0 (20

and the elasticity dynamics tum and for the relative velocity
: 2 1 2 2 .
Uij +V|(( )DkUij - E(Djvi( ) + DiVE >) pvi +0ip+0; (pViVj + %Wiw]) + 20 (PkUik)
p1 p2 2 2

—— (Willj+w;Li)In > +Ugdv +UgOiv — 0j®ij — viju 030wk — —plpzviﬁﬂmjmm =0 (24)

1 _

+61 8 Puact Gir (Pij — 58 Pua) — 626 APk Wi+ (Vj 4 P2 ple)Dj\Ni +pEw,
P

—EaAD;j — &3( 00 Pk + 61 Oy Pyt ) _ p2—p1 1
_‘54(Di|:|kq)jk+ DjDk(Dik) -0 (21) + O (Ill_IJfZ'f‘V«W-f— 2p Wz) + DJ gq)”

Since elasticity is assumed to be related to fluid 2, the + icl:'ijiUkj - ng(q)ijik)

linear and quadratic couplings to flow are related to ve- P2 p2

locity ¥, only. The quadratic couplings are of the “lower _ P1P2,, (M5 5. (© 5. gy — 0 (25)
" . . . ijki =1k ijkl ==Yk

convected" type, well-known for the single fluid descrip- p

tion [32] - [35] and are of great importance in the vis- j;rom (24) angular momentum conservation is obvious,

coelastic case. In addition, there are nonlinear couplings. : . o
to the concentration variable (the cubic one has been su;l?r—:rlﬁi }rr:(caotr?:arlesst;?bslz tI?r:i)o irs(ge::]r:ﬁg{ﬁg guDel tccf)”tr:e ?ela-
pressed), which are not possible in a 1-fluid description P Y

The {-terms describe relaxation of elastic strains and are’[Ion (13), if the viscosities are of the usual fonpq =



V1 (8k8ji + Sk G — 38 8a) + Vbij 8. Note that the vis-
cosities introduced in (22,23\)-,(jlk’|2712>, are different from
Vijkd andvi(jf(’lm> used in (24,25).

In order to conserve the global incompressibility con-

dition for all times, i.e. div= 0, the pressure has to fulfill
the relation

ap = —00; (e + pvPv?) + Oy
—0;0; (PjUik + PicUji) + vijio 0i 0 Oy e
+p1p2p tviE OO Oywe (26)

In contrast to 1-fluid descriptions for simple fluids, where

the incompressibility condition leads to a considerable i ) . ;
rand is not restricted to the two choices mentioned above

mathematical simplification, this is no longer the case fo
a 2-fluid description due the complicated form of (26),
even if incompressibility is a very good approximation
in physical terms. In particulafp is not only connected
to elastic compressionbli), but also to shear deforma-
tions, even in linear order.

and other physical effects that limit the possible choices.
For the two densitiep;, p2 e.g., the “natural” choice
for the convection velocities (taken in the preceding sec-
tion) seems to be their native velocitigs and v, re-
spectively. This implies that the total density is convected
with the mean velocity (as required by mass transport,
but manifest only, if the incompressibility assumption
is lifted), while the concentratiow is convected with
(1/p)(p2V1 + p1V2). Another obvious (“simple”) choice
would be the mean velocity as convection velocity for
both, the total density as well as the concentration im-
plying that alsq; andp; are convected witki. However,

the actual convection velocity depends on the value of a
material dependent (reactive) flow parameter (cajf)it

(y=0and= —1 for the “natural” and the “simple” one).

In the case of visco-elastic and elastic media, which
are described by a dynamic equation for the (Eulerian)
strain tensotJ;j, there are two velocities involved. One
is the usual convection velocity(JkU;;) and the other

ne occurs in the "lower convected" pald (i +
kidjVik). There is no fundamental reason for the two to
be equal, nor to be one of the obvious choicésr(,).

The static relations between the conjugate quantitie
to the variables close the system of equations

5T = TGt 5G+Ot¢_l5¢+063_1Ukk 27) For the evolution equations of the momenta special
1 care has to be taken to get a description, which is compat-

®ij = Gr(Uij — 58jUkk) + Uk ible with general Ia\_/vs: The currents and quasi-currents

3 that enter the description in terms of either the total mo-

+a§160+p’11<;16¢ (28)  mentum and the velocity difference or in terms of the

S(i—1) = p Y lso+p talso two individual momenta are not the same comparing
(H1 = o) P 1¢ PP egs.(22, 23) with (24, 25). In particular, the momenta

+x; "Ukk (29) @12 are convected witl¥; » implying that the total mo-

mentumgd and the relative velocity are convected with
v and (1/p)(p2V1 + p1Ve), respectively. Instead of this
“natural” choice there are other possibilities governed by
some phenomenological parameters (independent from
7). e.g. the “simple” choice that all 4 quantities are con-
vected withV. Even the convection of the entropy can
be tuned by choosing a paramefet= By + Booc Where
Within the general framework of hydrodynamics and By =1/p;, =0, = —1/p, leads to the convective veloc-
thermodynamics we have set up a consistent nonlinedty to beVy, V, ¥, respectively.
2-fluid description of complex fluids, in particular for  In the preceding section it was assumed that (linear)
polymer solutions or swollen elastomers. Such a generatlastic stress is carried only by fluid 2. Generally, how-
theory [34] determines the frame for any ad-hoc modelever, the distribution of the elastic stress among the two
which has to be a special case of the general one. Thituids is governed by a phenomenological coefficient
comparison with the general theory also reveals implicit(call it A(Y)). For, respectively, 2Y) = 1/p,, = 0, or
and explicit assumptions, approximations and possible= —1/p1, the elastic stress is carried only by fluid 2, is
generalizations of a given model. A “simple” or “natural” equally distributed between 1 and 2, or carried only by
choice in a given model may not be mandatory, but rathefluid 1; butA () can have any value in between.
imply a presumption. A prominent feature of the 2-fluid description is the
Quite generally we find that neither the velocity, with coupling of the concentration dynamics to the velocity
which a certain variable is convected, nor the stress didifference. Linearizing and Fourier transforming the dy-
vision between the different fluids can be determinednamic equations, thus eliminating from e.g. the con-
by general principles, but is rather system or materiakentration dynamics and neglecting fourth order gradient
dependent. On the other hand, there are certain restric-
tions and interrelations among the convective velocities

with 8¢ = p~18p; = —p18p,. Note thatSu is not
needed, but follows frond p via eq. (5) or (9).

DISCUSSION



terms we get 8.

iog —deffan — PP2gMefiar _ 000 =0 9
p
(30) 10
with frequency dependent effective diffusion and
thermo-diffusion coefficients 11.
geft = gy P2 HDT g
p? pé&+io 13,
dMeff _— qM Br+1) (32)
pé+io
and the dynamic coupling to the elastic degree of freed14.
dom by 16
20— PPz, ) 117 33) 17.
P pétio

where the dispersion step aroumd~ p £ is due to the
friction (~ &) between the two fluid momenta. Again
these possible additions to the concentration dynamics,

however, depend on the choices for the convection vey

locities (i.e. ony and f3) as well as on the way how the

elastic stress has been divided among the two fluids (oa1.

AU)). E.g. if the stress is equally distributed among the
2 fluids and if both densities are convected withhere

are no frequency dependent additions to the concentr&>
24.

tion dynamics at all.
Recently, 2-fluid descriptions of diffusion in poly-

meric systems have been given [36, 37] based on thes.

GENERIC approach making use of Poisson brackets. A

detailed comparison with these formulations is beyond?®:
7.

the scope of this manuscript and will be discussed elseé
where.

28.
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