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I. Introduction

Phase biaxiality, the spontaneous breaking of rotational symmetry about two distinct direc-
tions, is a very rare phenomenon in nematic systems. It has been found in very special lyotropic
systems in a very narrow phase space region only [1]. For rod-like molecules no biaxial nematic
phase is known. Either the molecules are of an almost-cylindrical shape, then the entropic
gain of randomly distributing the secondary axis wins over the energetic gain of ordering them,
or they are of a very non-cylindrical shape, which apparently suppresses nematic ordering at
all. A mixture of two uniaxial nematics with different preferred directions comes close to the
macroscopic dynamic behavior of true biaxial nematics [2], although there are subtle differences
[3]. Such a system however, usually modeled as a mixture of rods and plates, seems to phase
separate rather than to order nematically.

On the other hand, it is much easier to obtain phase biaxiality in smectic systems. There,
the layer normal k̂ already exists as a preferred direction due to the layering, although the
broken translational symmetry in smectics includes (or slaves) the broken rotational symmetry
related to k̂. Adding a second preferred direction, n̂, due to a (uniaxial) nematic ordering
can then lead to biaxiality. If k̂ ‖ n̂, one has the (uniaxial) smectic A phase, which is of D∞
symmetry, because there is the k̂ → −k̂ (or equivalently the n̂→ −n̂) invariance. For k̂ ⊥ n̂
an orthorhombic (i.e. untilted) biaxial smectic phase (called smectic CM in [4] and realized
in a polymeric system [5] with bulky side chains attached side-on) is obtained, which has D2h

symmetry [6, 7] according to the independent k̂ → −k̂ and n̂ → −n̂ invariances. For oblique
tilt angles between k̂ and n̂ the usual smectic C phase is obtained, which is of monoclinic C2h

symmetry due to the combined k̂→ −k̂ ∧ n̂→ −n̂ invariance.
In the following we will discuss possible smectic phases, where biaxial objects are arranged

in a layered fashion. Within the smectic array it seems to be easier to obtain biaxially ordered
systems. First we consider biaxial nematic-type and then banana-type objects. Nematic-like
objects are e.g. a triad of directions with head and tail indistinguishable, while banana-like
means that (at least) one direction is polar (a true vector with an arrow). They can also be
viewed as planes (or bricks) in the former, and as directed planes (or directed bricks) in the
latter case due to the polar axis present. Of special interest will be single- and twice-tilted
phases, which show a host of new smectic phases with quite unusual symmetries and dynamic
features [8]. It should be noted that all these phases are smectic C phases in the hydrodynamic
sense, since they are described by two extra degrees of freedom in the hydrodynamic limit, a
translational and a rotational one.

1



II. Smectic Phases with Nematic-type Biaxiality

Here we consider nematic-type constituents forming layers. Biaxially ordered they are char-
acterized by two distinct directions, n̂ and m̂, which we will assume to be orthogonal. A third
direction, l̂ ≡ n̂× m̂, completing the tripod can always be defined, but we will not refer to it
explicitly below. The case with oblique n̂ and m̂ is slightly more complicated, but does not
lead to any other phases than those found in the orthorhombic case.

If one of the axes, say n̂, is parallel to the layer normal k̂, the other one has to be orthogonal
to k̂ (Fig.1a) indicating the (orthorhombic) smectic CM phase discussed above. If on the other
hand one direction (say m̂) is orthogonal to the layer normal, the other direction can be oblique
(Figs.1b and 1c) giving rise to the common smectic C phase of (monoclinic) C2h symmetry.
There is a two-fold rotation axis (m̂) and a mirror plane perpendicular to m̂ (because of the
m̂ → −m̂ invariance). In order to preserve the angle between k̂ and n̂ there is the usual
combined k̂ → −k̂ ∧ n̂ → −n̂ invariance, additionally and independent of the m̂ → −m̂
invariance. Of course, one could interchange the role of n̂ and m̂ without getting anything
new.

The most interesting case is that of double tilt, where neither n̂ nor m̂ are parallel or
perpendicular to k̂, but make oblique angles (Fig.1d). There is no 2-fold axis left, nor is there
a mirror plane. The only symmetry element that remains is inversion symmetry, since the
structure is invariant under the combined k̂ → −k̂ ∧ n̂ → −n̂ ∧ m̂ → −m̂ replacement.
Thus, this phase is Ci-symmetric (monoclinic) and could be called smectic CT due to the
additional tilt (compared to the SmC phase).

Fig.1 The biaxial phases obtained by nematic-type ordering: a) the untilted CM phase, b)
the usual smectic C phase, and d) the twice-tilted smectic CT phase with Ci symmetry; fig. c)
is a 90o degree side view of b) and k̂ is the layer normal. Here and in the following figures
crosses (circles) denote those parts that point out (into) the plane of drawing.

Hydrodynamically all these phases are described by two symmetry variables, the layer dis-
placement and the the rigid rotation of the n̂/m̂ structure about the layer normal k̂. Since
the symmetry is different, the form of the tensors (the number of coefficients they contain)
and the kind of couplings among the various variables can be different. E.g., the symmet-
ric second rank tensors (like electric and magnetic susceptibility, heat conduction and electric
conductivity, rotational-elastic tensor for the rotational degree of freedom) contain 3, 4, and 6
independent coefficients in the smectic CM, C, and CT phase, respectively, while for the (fourth
rank) rotational-elastic tensor of the layer normal (as well as for the viscosity tensor) the num-
bers are 9, 13, and 21 and for the (third rank) tensor describing rotational-elastic couplings
between layer normal and rotational degree of freedom one gets 2, 7, and 13 coefficients, respec-
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tively. Note that in the literature for the C and the CM phases sometimes lower numbers for
these coefficients are given, since some of them can be regarded as higher gradient corrections
to the elastic modulus and are therefore neglected. In all three cases there is only one true
elastic modulus connected with layer compression. For the setup of nonlinear hydrodynamic
equations in the monoclinic case see [9], while in [10] the linearized hydrodynamics (including
electric behavior) of the orthorhombic phase is discussed.

III. Smectic Phases with Banana-type Biaxiality

Quite different phases are obtained, when the objects that form the layers are polar. That
means there is one direction, m̂, that does not have a m̂→ −m̂ invariance. This is realized by
using bow- or banana-shaped molecules (Fig.2a). If they are well-oriented, there is a nematic-
like direction, n̂ with a n̂→ −n̂ invariance, and in addition the polar direction m̂, which will
be assumed to be orthogonal to n̂ (without loss of generality). In the untilted case, where n̂ is
parallel to the layer normal k̂, the polar direction lies in the layer planes (Fig.2b). This phase
has a two-fold rotation axis (along the m̂ direction) and a mirror plane that contains the polar
axis m̂, resulting in a C2v (orthorhombic) symmetry [11]. It has been called CP phase in [12]
since it is ferroelectric [13], if stacked uniformly. It can be antiferro- or ferri-electric for different
stacks (Figs.2c and d). The CP phase has possibly be seen experimentally [14, 15]. In contrast
to a chiral C∗ phase, the CP phase is achiral and does not show any helix. Thus, there is no
need for unwinding any helix by surface forces or external fields before switching.

Fig.2 a) Polar bananas, b) the untilted ferroelectric smectic CP phase, c) its antiferroelec-
tric, and d) its ferrielectric variant.

A phase of the same C2v symmetry is obtained, if m̂ is along the layer normal k̂, and n̂
is perpendicular to the latter. The only difference to the CP phase is that this phase has a
polarization across, instead of within the layers. Experimentally such a phase could be realized
by the polymeric system of [5], if the bulky side-chains have a dipole moment along their side-on
spacers.

Even more interesting phases are obtained when n̂, m̂, or both are tilted. Let us start
with the case that n̂ is tilted with respect to the layer normal k̂, but the polarisation m̂ stays
perpendicular to it. This phase, called smectic CB2 in [8], still has a two-fold rotation axis
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(m̂), but no mirror plane at all, since k̂, m̂ and n̂ do not lie in one plane (Fig.3). In such C2-
symmetric (monoclinic) phases the direction of the polarisation is fixed by symmetry (similar
to the smectic C∗ case). C2 symmetry also implies chirality (optical activity), since there is no
inversion center. In the standard smectic C∗ phases the chirality of the molecules itself breaks
the mirror symmetry (of the k̂/m̂ plane) while in the CB2 phases the additional tilt of n̂ is
responsible for chirality.

Fig.3 a) The smectic CB2 phase, with in-plane polarisation and n̂ tilted, b) a variant of it
with different handedness, c) and d) the respective forms with opposite polarisation.

Taking the Fig.3a to be a left-handed variant (take k̂, m̂ and the out-of-paper component
of n̂) then Fig.3b shows a right-handed version of this phase. Of course, chirality can lead
to a helical stacking and the phase is then heli-electric (like C∗ [16]). However, since both
versions are completely equivalent, one has to expect to find both, left- and right-handed
helices, statistically distributed in a given sample (in contrast to C∗ phases, where the molecules’
handedness chooses one type of chirality). Another difference to conventional C∗ phases comes
from the possibility to stack layers antiferroelectrically. Stacking variants of Fig.3a with 3c
(or 3b with 3d) alternatively, one gets a locally antiferroelectric structure with n̂ synclinic.
Stacking 3a with 3b (3d) the local structure is ferroelectric (antiferroelectric) with n̂ anticlinic.
In any case, globally the polarisation (or staggered polarisation in the antiferroelectric case) is
in-plane helical. Such a phase seems to have been described and discussed in [17].

Instead of tilting the n̂/m̂ structure in Fig.2b about m̂, which has lead to the CB2 phase
discussed above, one can rotate it about n̂×m̂, which gives a phase, where n̂ and m̂ are both
tilted with respect to the layer normal k̂, but where these three directions all lie in one plane
(Fig.4).

Fig.4 The smectic CB1 phase, where the polarisation lies in the k̂/n̂-plane, thus having also
a component perpendicular to the layers. Shown are all four different modifications concerning
the polarization.

This plane is of course a mirror plane, but there is no symmetry axis left and the phase
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(called CB1 in [8]) has C1h (monoclinic) symmetry. It is achiral and does not show helices due
to the mirror plane. By symmetry the polarisation (m̂) is forced to lie in the k̂/n̂ plane, but
within this plane it can have any direction depending on temperature, pressure, chemistry etc.
(For the special cases m̂ ⊥ or ‖ k̂, the CP phase of Fig.2 is obtained). Thus the CB1 phase can
be ferroelectric with a component of the polarisation out of the layer planes. However, there
are four different ways of stacking the various modifications on top of each other. Alternating
the variants of Fig.4a with 4b results in a completely antiferroelectric structure, while 4a with
4c gives a structure that is antiferro- in, but ferroelectric across, the layers; while for 4a stacked
with 4d there is ferro- in, and antiferroelectricity across, the layers.

Tilting the n̂/m̂ structure in Fig.2b about two different axis results in the most general
smectic C phase possible, the smectic CG phase mentioned already briefly in [4]. The directions
n̂ and m̂ are tilted with respect to the layer normal k̂, but do not form a common plane with
it (Fig.5). Thus, there is no mirror plane, no rotation axis left, and no inversion symmetry,
because of the polar direction, i.e. this phase has no symmetry element at all, a situation that is
called C1 symmetry (triclinic) by crystallographers. The polarisation is not fixed by symmetry,
but can have any direction depending on temperature, pressure, chemistry etc., i.e. generally
there is a component across the layers and two within the layers (say parallel and perpendicular
to the tilt direction of n̂). Of course, this phase comprises all the intricacies of the CB1 and
CB2 phases. It is chiral, which leads to helices with arbitrary handedness and arbitrary helical
direction. There are ferro- and antiferroelectric, as well as complicated mixed stacks possible,
where e.g. ferroelectricity (antiferroelectricity) holds in 0, 1, 2, or 3 (3, 2, 1, or 0) directions,
say across the layers, parallel, and perpendicular to the tilt direction of n̂ within the layers.
Fig.5 shows the 8 different possibilities of arranging the polarisation, the inclination (the tilt
direction of n̂ out of the k̂/m̂ plane) and the handedness.

Fig.5 The most general smectic CG phase with 8 different modifications concerning the po-
larisation, handedness and inclination.

Hydrodynamically all these banana phases are generally smectic C phases described by two
symmetry variables, the layer displacement and the rigid rotation of the n̂/m̂ structure about
the layer normal k̂. If there is a helix, the latter can be replaced by the helix displacement along
the helical axis [18]. However, due to the very low symmetries involved [19], due to complicated
ferro- and antiferroelectric stacks, and due to possibly very complicated helical structures, the
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actual description can be very complicated, especially if external electric fields are involved.
Some aspects are discussed in [8].

Some of the new banana phases discussed in [20] or at the recent ‘Banana Workshop’ at the
TU Berlin may turn out to be phases discussed above.

Acknowledgement
With great pleasure I thank P.E. Cladis and H.R. Brand for many fruitful discussions on the
banana phases. Section III is based on ref. [8].

References

[1] L.J. Yu and A. Saupe, Phys.Rev.Lett. 45, 1000 (1981).

[2] H.R. Brand and H. Pleiner, Phys.Rev. A24, 2777 (1981).

[3] H. Pleiner and H.R. Brand, J.Phys.(Paris) 46, 615 (1985).

[4] P.G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford (1975).

[5] H. Leube and H. Finkelmann. Makromol.Chem. 191, 2707 (1990) and 192, 1317 (1991).

[6] H.R. Brand and H. Pleiner, Makromol.Chem.Rapid.Commun. 12, 539 (1991).

[7] We use Schönflies notation; for the symmetry symbols used in this manuscript there are other notations,
e.g. D2h = 2/m 2/m 2/m = mmm; C2v = 2mm = mm; C2h = 2/m; C2 = 2; C1h = CS = m; Ci = 1̄; C1
= 1.

[8] H.R. Brand, P.E. Cladis, and H. Pleiner, Eur.Phys.J. B ..., ... (1998).

[9] H. Pleiner and H.R. Brand, Ferroelectrics 214, 19 (1998).

[10] H.R. Brand and H. Pleiner, J.Phys.II (France) 1, 1455 (1991).

[11] This is in contrast to the smectic C phase with C2h symmetry, where the mirror plane is perpendicular to
the preferred direction k̂ × n̂, rendering the latter non-polar.

[12] H.R. Brand, P.E. Cladis, and H. Pleiner, Macromolecules 25, 7223 (1992).

[13] We use the term ‘ferroelectric’ in the Statistical Mechanics sense, i.e. any phase showing a finite sponta-
neous polarisation is called ferroelectric, whether it is switchable or not. The latter feature is not connected
with symmetries and therefore not discussed here.

[14] E.A. Soto Bustamente, S.V. Yablonskii, B.I. Ostrovskii, L.A. Beresnev, L.M. Blinov, W. Haase,
Chem.Phys.Lett. 260, 447 (1996).

[15] E.A. Soto Bustamente, S.V. Yablonskii, B.I. Ostrovskii, L.A. Beresnev, L.M. Blinov, W. Haase, Liq.Cryst.
21, 829 (1996).

[16] H.R. Brand, P.E. Cladis, and P.L. Finn, Phys.Rev. A31, 361 (1985).

[17] D.R. Link, G. Natale, R. Shao, J.E. McLennan, N.A. Clark, E. Körblova, D.M. Walba, Science 278, 1924
(1997).

[18] H.R. Brand and H. Pleiner, J.Phys.(Paris) 45, 563 (1984).

[19] The only low symmetry phase not covered by biaxial smectic phases would be of D2 (or V or 222) symmetry
showing 3 two-fold axes, but no mirror plane, thus being chiral but not ferroelectric.

[20] T. Sekine, T. Niori, J. Watanabe, T. Furukawa, S.W. Choi, H. Takezoe, J. Mat. Chem. 7, 1307 (1997).

6


