The Elasticity of Nematic Liquid Crystalline Elastomers

- are symmetry arguments always right?

Harald Pleiner¹ and H.R. Brand²

¹Max Planck Institute for Polymer Research, 55021 Mainz, Germany ²Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany

6th International Liquid Crystal Elastomer Conference, September 5-7, 2011, Lisboa, Portugal,

http://www.mpip-mainz.mpg.de/~pleiner/lcpe.html

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

Introduction

- Elasticity Including Nonlinear Relative Rotations
 - Energetics
 - Perpendicular Stretching
- Linear Response under Pre-Strain
 - Effective Linear Shear Modulus
 - Director Reorientability
- Interpretation
 - Symmetry Argument Failure
 - Example
 - Generalization of the Free Energy
- Final Remarks

A (10) > (10)

Introduction

Plateau for perpendicular stretch

The stress-strain data points of Urayama et al.¹ in the representation of the nominal stress as a function of the true strain.

¹K. Urayama, R. Mashita, I. Kobayashi, and T. Takigawa, *Macromol.* 40 (2007) 7665

HEORY

Monodomain side-chain nematic elastomers

experimental results for the usual twice cross-linked elastomers: 3 regimes

- (ordinary) linear anisotropic elasticity director is clamped by the network and does not reorient soft elasticity? Goldstone mode?
- nonlinear stress-strain 'plateau' for perpendicular stretching accompanied by a complete director reorientation where does it come from and what happens at the beginning/end?
- above a second threshold (ordinary) nonlinear anisotropic elasticity without director reorientation

No soft elasticity (linear)

- Warner & Terentjev²: "soft elasticity" $\leftrightarrow \tilde{c}_{44} = 0$ ($C_5^R = 0$)
- corresponds to a Goldstone mode due to spontaneous shape change³
- however, experimentally no vanishing linear shear modulus
- semisoft (almost soft): small imperfections prevent *c*₄₄ from being exactly zero,
- instead $\tilde{c}_{44} = \mu \alpha \frac{r}{r-1}$ small,⁴ since the semisoftness parameter $\alpha \approx 0.1$ is small

²M. Warner and E. Terentjev, *Liquid Crystal Elastomers*, Oxford University Press 2003, Chap. 7.1 - 7.3

³L. Golubovic and T.C. Lubensky, *Phys. Rev. Lett.* 63 (1989) 1082.

⁴Warner and Terentjev, cit. op., Chap. 7.4 and 7.5

No soft elasticity (linear)

- Warner & Terentjev²: "soft elasticity" $\leftrightarrow \tilde{c}_{44} = 0 \ (C_5^R = 0)$
- corresponds to a Goldstone mode due to spontaneous shape change³
- however, experimentally no vanishing linear shear modulus
- semisoft (almost soft): small imperfections prevent *c*₄₄ from being exactly zero,
- instead $\tilde{c}_{44} = \mu \alpha \frac{r}{r-1}$ small,⁴ since the semisoftness parameter $\alpha \approx 0.1$ is small

²M. Warner and E. Terentjev, *Liquid Crystal Elastomers*, Oxford University Press 2003, Chap. 7.1 - 7.3

³L. Golubovic and T.C. Lubensky, *Phys. Rev. Lett.* 63 (1989) 1082.

⁴Warner and Terentjev, cit. op., Chap. 7.4 and 7.5

No semisoft elasticity (linear)

- however, experimentally the linear shear modulus is of the same order as in the isotropic phase⁵
- $G' \sim \tilde{c}_{44}$ as a function of temperature
- small dip explained by P.G. de Gennes in Liquid Crystals of Oneand Two-Dimensional Order, eds. W. Helfrich and G. Heppke, Springer, New York, p. 231 (1980).

ordinary, linear Hookean elasticity of uniaxial anisotropic type

⁵P. Martinoty, P. Stein, H. Finkelmann, H. P., and H.R. Brand, *Eur. Phys. J. E*, **14** (2004) 311.

Semisoftness (nonlinear)

- the general scenario of semisoftness ideal softness plus some disturbance – has been used to describe the elastic plateau (in the nonlinear domain)⁶
- as a result, the effective, or apparent linear elastic coefficient vanishes at the beginning and end of the plateau
- at the same points, director orientational fluctuations diverge
- general symmetry arguments are used to show that 'ideal softness plus some disturbance' always leads to this soft mode behavior⁷
- does this mean 'semisoftness' is the reason for the plateau and the soft mode behavior?

⁶J. S. Biggins, E. M. Terentjev, and M. Warner, *Phys. Rev. E* 78 (2008) 041704
 ⁷F. F. Ye and T. C. Lubensky, *J. Phys. Chem. B* 113 (2009) 3853.

Pleiner (MPI-P Mainz)

< ロ > < 同 > < 回 > < 回 >

Semisoftness (nonlinear)

- the general scenario of semisoftness ideal softness plus some disturbance – has been used to describe the elastic plateau (in the nonlinear domain)⁶
- as a result, the effective, or apparent linear elastic coefficient vanishes at the beginning and end of the plateau
- at the same points, director orientational fluctuations diverge
- general symmetry arguments are used to show that 'ideal softness plus some disturbance' always leads to this soft mode behavior⁷
- does this mean 'semisoftness' is the reason for the plateau and the soft mode behavior?

⁶J. S. Biggins, E. M. Terentjev, and M. Warner, *Phys. Rev. E* **78** (2008) 041704 ⁷F. F. Ye and T. C. Lubensky, *J. Phys. Chem. B* **113** (2009) 3853.

A D N A B N A B N A B

Different viewpoint

- first, one should differentiate between the linear semisoftness (small linear elastic coefficient) and the nonlinear plateau behavior
- the latter is a genuine nonlinear feature independent of the linear behavior
- it is unfortunate to give two separate phenomena the same name
- the linear (semi-)softness describes an (almost) Goldstone mode related to a broken symmetry [not present in nematic LC elastomers], while the nonlinear semisoftness gives a soft mode, a phase transition-type phenomena based on the special free energy
- Goldstone mode and soft mode are completely independent objects (cf. smectic C liquid crystals)

Different viewpoint

- first, one should differentiate between the linear semisoftness (small linear elastic coefficient) and the nonlinear plateau behavior
- the latter is a genuine nonlinear feature independent of the linear behavior
- it is unfortunate to give two separate phenomena the same name
- the linear (semi-)softness describes an (almost) Goldstone mode related to a broken symmetry [not present in nematic LC elastomers], while the nonlinear semisoftness gives a soft mode, a phase transition-type phenomena based on the special free energy
- Goldstone mode and soft mode are completely independent objects (cf. smectic C liquid crystals)

Different viewpoint (cont.)

our viewpoint:

- the soft mode behavior at the beginning and end of the elastic plateau can be obtained without the assumption of the existence of semisoftness
- it can be obtained by, and is based on the coupling between elasticity and director reorientation via 'relative rotations'
- there is no small parameter involved (no linear semisoftness)

our description (de Gennes approach):

- nematic LC elastomers are solid, elastic bodies with relative rotations between director and network
- all ingredients are highly nonlinear

Experiments

there are basically two experiments:

 light scattering experiments probing the nematic director fluctuations

(almost) critical slowing down

A. Petelin and M. Čopič, Phys. Rev. Lett. 103, 077801 (2009)

10/35

A (1) > A (2) > A

Experiments (cont.)

direct rheological measurements of the effective shear modulus

D. Rogez and P. Martinoty, Eur. Phys. J. E, 34, 69 (2011)

Pleiner (MPI-P Mainz)

Nematic Elastomer Elasticity

Experiments (cont.)

Ø direct rheological measurements of the effective shear modulus

D. Rogez and P. Martinoty, Eur. Phys. J. E, 34, 69 (2011)

conflicting outcome !!!

Elastic and orientational degrees of freedom

This description of the nematic elastomer elasticity has been done together with A. Menzel^{8,9}

Network:

$$da_{lpha} = R_{lpha j} \, \Xi_{jk} \, dr_k$$

Eulerian strain tensor

$$\begin{aligned} \varepsilon_{ik} &= \frac{1}{2} [\delta_{ik} - \Xi_{ij} \Xi_{ik}] \\ &= \frac{1}{2} [\delta_{ik} - (\partial a_{\alpha} / \partial r_k) (\partial a_{\alpha} / \partial r_i)] \\ &= \frac{1}{2} [\partial u_i / \partial r_k + \partial u_k / \partial r_i - (\partial u_j / \partial r_i) (\partial u_j / \partial r_k)] \end{aligned}$$

Nematic: Director

 $\hat{\boldsymbol{n}} = \boldsymbol{S} \cdot \hat{\boldsymbol{n}}_{\boldsymbol{0}}$ and textures $(\nabla_j \boldsymbol{n}_i)$

⁸A. Menzel, H.P., H.R. Brand, *J. Appl. Phys.* **105**, 013503 (2009) and *Eur. Phys. J. E* **30**, 371 (2009)
⁹address starting October 1, 2011: Inst. Theor. Phys., Univ. Düsseldorf, Germany

Energetics

Relative rotations

Coupling:

- rotations of the anisotropic network $\hat{n}^{nw} = R^{-1} \cdot \hat{n}_0^{nw}$ (there is no closed expression for R^{-1} in terms of $\partial u_j / \partial r_i$)
- rotations of the nematic director $\hat{n} = S \cdot \hat{n}_0$
- relative rotations (projections)¹⁰

$$egin{array}{rcl} ilde{\Omega} &\equiv& oldsymbol{\hat{n}} - \gamma \ oldsymbol{\hat{n}}^{oldsymbol{nw}} \ ilde{\Omega}^{oldsymbol{nw}} &\equiv& -oldsymbol{\hat{n}}^{oldsymbol{nw}} + \gamma \ oldsymbol{\hat{n}} \end{array}$$

with $\gamma \equiv \hat{\pmb{n}} \cdot \hat{\pmb{n}}^{nw}$ resulting in $\tilde{\pmb{\Omega}} \cdot \hat{\pmb{n}}^{nw} = 0 = \tilde{\pmb{\Omega}}^{nw} \cdot \hat{\pmb{n}}$

¹⁰A. M. Menzel, H. Pleiner and H. R. Brand, *J. Chem. Phys.* **126** (2007) 234901.

Free energy

Power series expansion in ε_{ij} , $\tilde{\Omega}_i$, $\tilde{\Omega}_j^{nw}$, and n_i and all its couplings up to third order (reduces to de Gennes' expression in the linear theory¹¹)

here: simplified model (analytical treatment) - elastic nonlinearities neglected

$$F = \frac{1}{2} c_{44} \varepsilon_{ij} \varepsilon_{ij} + \dots + \frac{1}{2} D_1 \tilde{\Omega}_i \tilde{\Omega}_i + D_1^{(2)} (\tilde{\Omega}_i \tilde{\Omega}_i)^2 + D_1^{(3)} (\tilde{\Omega}_i \tilde{\Omega}_i)^3 + D_2 n_i \varepsilon_{ij} \tilde{\Omega}_j + D_2^{nw} n_i^{nw} \varepsilon_{ij} \tilde{\Omega}_j^{nw} + D_2^{(2)} n_i \varepsilon_{ij} \varepsilon_{jk} \tilde{\Omega}_k + D_2^{nw,(2)} n_i^{nw} \varepsilon_{ij} \varepsilon_{jk} \tilde{\Omega}_k^{nw} - \frac{1}{2} \epsilon_a (n_i E_i)^2$$

with the nonlinear rotation matrix to cubic order

 $\mathbf{R}_{ij} = \delta_{ij} + \varepsilon_{ij} + \frac{3}{2}\varepsilon_{ik}\varepsilon_{kj} + \frac{5}{2}\varepsilon_{ik}\varepsilon_{kl}\varepsilon_{lj} - (\partial_i \mathbf{u}_j) - \varepsilon_{ik}(\partial_k \mathbf{u}_j) - \frac{3}{2}\varepsilon_{ik}\varepsilon_{kl}(\partial_l \mathbf{u}_j) + \dots$

¹¹P.G. de Gennes, in *Liquid Crystals of One- and Two-Dimensional Order*, eds. W. Helfrich and G. Heppke, Springer, New York, p. 231 (1980).

Plateau for perpendicular stretch

The stress-strain data points of Urayama et al. and the theoretical line obtained by the present model in the representation of the nominal stress as a function of the true strain.

Director reorientation

Theoretical curves of the director reorientation during stretch (*A*) for different stretch directions. For $\vartheta_0 = 0^\circ$ (perpendicular stretch) a singular threshold behavior is found.

16/35

4 A N

Forward bifurcation

the curve $\vartheta(A)$ as before, but with the area around A_c enlarged

In the vicinity of A_c an amplitude equation can be derived analytically for the case $\vartheta_0 = 0$ (perpendicular stretch)

$$0 = \vartheta \{ a(A_c - A) + g \vartheta^2 \} + \mathcal{O}(\vartheta^5).$$

 \rightarrow forward bifurcation with exchange of stability between $\vartheta = 0$ for $A < A_c$ and $\vartheta \sim \sqrt{A - A_c}$ for $A > A_c$

for $\vartheta_0 > 0$ (oblique stretch) an imperfect bifurcation is obtained

17/35

イロト イヨト イヨト イヨト

Forward bifurcation

the curve $\vartheta(A)$ as before, but with the area around A_c enlarged

In the vicinity of A_c an amplitude equation can be derived analytically for the case $\vartheta_0 = 0$ (perpendicular stretch)

$$0 = \vartheta \{ a(A_c - A) + g \vartheta^2 \} + \mathcal{O}(\vartheta^5).$$

 \rightarrow forward bifurcation with exchange of stability between $\vartheta = 0$ for $A < A_c$ and $\vartheta \sim \sqrt{A - A_c}$ for $A > A_c$

for $\vartheta_0 > 0$ (oblique stretch) an imperfect bifurcation is obtained

Shear response

For a given pre-strain A – that results in a given compression B, shear S, and tilt angle ϑ ,

a small shear δS is added and the effective shear modulus is calculated

Homeotropic geometry with a small shear δS added

Effective linear shear modulus

The system is pre-stretched in a direction perfectly perpendicular to the initial director orientation \hat{n}_0 . The zeroes of the effective shear modulus at the beginning and end of the plateau denote diverging fluctuations.

Electric field response

For a given prestrain A – that results in a given compression B, shear S, and tilt angle ϑ ,

an external field *E* is applied (|| and \perp to \hat{n}_0) and the reorientability of the director is calculated

Homeotropic geometry with an external field applied

Director reorientability

Reorientability $\partial^2 \vartheta / \partial E^2|_{E=0}$ as a function of the pre-stretching amplitude *A*, where the divergencies take place at the beginning and end of the plateau ($\boldsymbol{E} \perp \hat{\boldsymbol{n}}_0$)

Director reorientability

Reorientability $\partial^2 \vartheta / \partial E^2|_{E=0}$ as a function of the pre-stretching amplitude *A*, where the divergencies take place at the beginning and end of the plateau ($\boldsymbol{E} \perp \hat{\boldsymbol{n}}_0$)

Same theoretical data fitted in the region $\vartheta \gtrsim 0$ by a curve $\propto (A - A_c)^x$ with $x \approx -1/2$, thus clearly indicating a soft mode behavior in mean field description

Oblique pre-strain

Effective shear modulus $\partial^2 F / \partial (\delta S)^2|_{\delta S=0}$ (left) and reorientability $\partial^2 \vartheta / \partial E^2|_{E=0}$ (right) as a function of the pre-stretching amplitude *A*. Here, the initial director orientation \hat{n}_0 slightly deviates from the perfectly perpendicular orientation by an angle of 0.01 rad (0.57°).

imperfect bifurcation: no divergent fluctuations

Our interpretation

Stretching a mono-domain nematic elastomer perpendicularly, the resulting elastic plateau at finite strains

- comes with a vanishing effective linear modulus and a divergent director reorientability at its beginning and end (soft mode or forward bifurcation similar to a second order phase transition)
- the critical behavior is related to the kink in the director reorientation
- this bifurcation-type behavior is a genuine manifestation of the role of nonlinear relative rotations
- it requires two independent preferred directions and discriminates nematic LSCEs from simple anisotropic solids

23/35

Our interpretation (contin.)

- although this soft mode behavior is the same as found by the (nonlinear) semisoft approach, our description does not make use of any linear ideal soft-elastic behavior Nambu-Goldstone mode ("soft-elasticity"), nor of any closeness to an ideal soft-elastic behavior ("semisoft elasticity")
- we find this soft-mode scenario also for cases, where the plateau starts at very large applied strains

Theory vs. experiment

- both types of theory show the soft mode behavior
- fitting to the light scattering measurements, but contradicting the rheological shear elastic measurements
- our description cannot exclude the possibility of plateaus without a soft mode behavior, since we cannot explore the complete parameter space

 however, the soft mode behavior seems to be related to the kink behavior of the director reorientation

- the semisoft description makes a strong statement that there must always be a soft mode due to symmetry arguments
- therefore the rheological shear elastic measurements must be wrong

Theory vs. experiment

- both types of theory show the soft mode behavior
- fitting to the light scattering measurements, but contradicting the rheological shear elastic measurements
- our description cannot exclude the possibility of plateaus without a soft mode behavior, since we cannot explore the complete parameter space

 however, the soft mode behavior seems to be related to the kink behavior of the director reorientation

- the semisoft description makes a strong statement that there must always be a soft mode due to symmetry arguments
- therefore the rheological shear elastic measurements must be wrong

25/35

Theory vs. experiment

- both types of theory show the soft mode behavior
- fitting to the light scattering measurements, but contradicting the rheological shear elastic measurements
- our description cannot exclude the possibility of plateaus without a soft mode behavior, since we cannot explore the complete parameter space

 however, the soft mode behavior seems to be related to the kink behavior of the director reorientation

- the semisoft description makes a strong statement that there must always be a soft mode due to symmetry arguments
- therefore the rheological shear elastic measurements must be wrong

are symmetry arguments always correct ??

Example

Lehmann effect

Lehmann: director rotations when a temperature gradient is applied

$$oldsymbol{n} imes rac{\partial}{\partial t} oldsymbol{n} = \psi' oldsymbol{
abla}_{\perp} \Theta$$

- works also for concentration gradients and electric fields
- there are inverse effects¹²
- these effects are dissipative (although there are contributions originating from the statics)
- these effects are chiral: $\psi' = q \psi$ (de Gennes' symmetry argument), where q is the helical pitch

Example

Chirality at the compensation point

what happens at the compensation point?

- some mixtures of chiral molecules and at least one pure compound show a compensation point (no helix or q = 0)
- therefore, Lehmann has to vanish due to symmetry arguments,¹³
- however, experiments show non-vanishing Lehmann effects^{14,15}

¹⁵N. Éber and I. Jánossy, *Mol. Cryst. Liq. Cryst.*, **72** (1982) 233; **102** (1984) 311; and Mol. Cryst. Liq. Cryst. Lett., 5 (1988) 81.

¹³P. G. de Gennes and J. Prost, *The Physics of Liquid Crystals* (Clarendon, Oxford) 1995.

¹⁴P. Oswald and A. Dequidt, *Europhys. Lett.*, 83 (2008) 16005; 80 (2007) 26001; Phys. Rev. Lett. 100 (2008) 217802.

Example

Chirality at the compensation point

what happens at the compensation point?

- some mixtures of chiral molecules and at least one pure compound show a compensation point (no helix or q = 0)
- therefore, Lehmann has to vanish due to symmetry arguments.¹³
- however, experiments show non-vanishing Lehmann effects^{14,15}

are symmetry arguments always correct ??

¹⁵N. Éber and I. Jánossy, *Mol. Cryst. Liq. Cryst.*, **72** (1982) 233; **102** (1984) 311; and Mol. Cryst. Liq. Cryst. Lett., 5 (1988) 81.

27/35

¹³P. G. de Gennes and J. Prost, *The Physics of Liquid Crystals* (Clarendon, Oxford) 1995.

¹⁴P. Oswald and A. Dequidt, *Europhys. Lett.*, 83 (2008) 16005; 80 (2007) 26001; Phys. Rev. Lett. 100 (2008) 217802.

Lehmann effect experiments

experiments show a non-vanishing Lehmann coefficient

- answer: not necessarily, since the symmetry argument is not applicable
 - it starts from a description that is not general enough!¹⁶

¹⁶H. Pleiner and H.R. Brand, Europhys. Lett. **89**, 26003 (2010)

28/35

Image: A matrix

Lehmann effect experiments

experiments show a non-vanishing Lehmann coefficient

experiment wrong, since it violates a symmetry argument?

- answer: not necessarily, since the symmetry argument is not applicable
 - it starts from a description that is not general enough!¹⁶

¹⁶H. Pleiner and H.R. Brand, Europhys. Lett. **89**, 26003 (2010)

Free energy

(achiral) nematics: $f_{nema} = \frac{1}{2}K_1S^2 + \frac{1}{2}K_3B^2 + \frac{1}{2}K_2T^2$ with

- splay S = divn scalar
- bend $\boldsymbol{B} = \boldsymbol{n} \times \operatorname{curl} \boldsymbol{n}$ vector
- twist T = n · curln pseudoscalar

equilibrium state: S = B = T = 0, homogeneous n = const., $f_{nema}^{eq} = 0$

(chiral) cholesterics: $f_{chol} = f_{nema} + K'_2 T$

- a linear twist term $\sim T$ is allowed^{17,18}
- K'_2 has to be a pseudoscalar

 $^{1'}K'_2$ is called k_2 in F.C. Frank, *Discuss. Faraday Soc.*, **25** (1958) 19. ¹⁸in addition, bilinear terms $\sim T\delta\sigma$, $\sim T\delta\rho$, and $\sim T\delta c$ are possible

Free energy

(achiral) nematics: $f_{nema} = \frac{1}{2}K_1S^2 + \frac{1}{2}K_3B^2 + \frac{1}{2}K_2T^2$ with

- splay S = divn scalar
- bend $\boldsymbol{B} = \boldsymbol{n} \times \operatorname{curl} \boldsymbol{n}$ vector
- twist T = n · curln pseudoscalar

equilibrium state: S = B = T = 0, homogeneous n = const., $f_{nema}^{eq} = 0$

(chiral) cholesterics: $f_{chol} = f_{nema} + K'_2 T$

- a linear twist term ~ T is allowed^{17,18}
- K'_2 has to be a pseudoscalar

¹⁷ K'_2 is called k_2 in F.C. Frank, *Discuss. Faraday Soc.*, **25** (1958) 19. ¹⁸ in addition, bilinear terms ~ $T\delta\sigma$, ~ $T\delta\rho$, and ~ $T\delta c$ are possible

29/35

Pleiner (MPI-P Mainz)

< ロ > < 同 > < 回 > < 回 >

Helix

$$f_{chol} = \frac{1}{2}K_1S^2 + \frac{1}{2}K_3B^2 + \frac{1}{2}K_2T^2 + K_2'T$$

is minimized by a helix with the (pseudoscalar) coefficient q

 $\boldsymbol{n} = \boldsymbol{e}_x \cos qz + \boldsymbol{e}_y \sin qz$

(implying $S = \mathbf{B} = 0$ and T = -q), if

 $q
ightarrow q^{eq} = K_2'/K_2$

leading to the maximum energy reduction

$$f^{eq} = -\frac{1}{2}(K_2')^2/K_2$$

C

30/35

Nematic Elastomer Elasticity

Symmetry

• since K'_2 is a pseudoscalar, it has to vanish in an achiral system,

$$\longrightarrow K_2' \sim q$$

A) de Gennes' choice: $K'_2 = qK_2$, resulting in $q^{eq} = q$ (only one pseudoscalar quantity)

$$f_{chol} = \frac{1}{2}K_2(\boldsymbol{n}\cdot\operatorname{curl}\boldsymbol{n}+\boldsymbol{q})^2+\dots$$

B) generally: $K'_2 = qL_2$, resulting in $q^{eq} = q\frac{L_2}{K_2}$ (q^{eq} and q are not identical)

$$f_{chol} = \frac{1}{2}K_2(\boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{n} + \boldsymbol{q}^{eq})^2 + \dots$$

Symmetry

• since K'_2 is a pseudoscalar, it has to vanish in an achiral system,

$$\longrightarrow K_2' \sim q$$

A) de Gennes' choice: $K'_2 = qK_2$, resulting in $q^{eq} = q$ (only one pseudoscalar quantity)

$$f_{chol} = \frac{1}{2}K_2(\boldsymbol{n}\cdot\operatorname{curl}\boldsymbol{n}+\boldsymbol{q})^2+\dots$$

B) generally: $K'_2 = qL_2$, resulting in $q^{eq} = q\frac{L_2}{K_2}$ (q^{eq} and q are not identical)

$$f_{chol} = \frac{1}{2}K_2(\boldsymbol{n}\cdot\operatorname{curl}\boldsymbol{n}+\boldsymbol{q}^{eq})^2+\ldots$$

31/35

Resolution

- A) if the vanishing helix at the compensation point means q = 0 \longrightarrow there is no Lehmann effect, since $\psi' = q \psi = 0$
- B) if the vanishing helix at the compensation point means $q^{eq} = 0$, this can be obtained by $L_2 = 0$, with q still being finite \longrightarrow there is a Lehmann effect possible and there is no contradiction between experiment and theory¹⁹

starting from a more general description resolves the contradiction between experiment and symmetry argument

 $^{^{19}}$ A non-vanishing *q* at the compensation point means the system is still chiral, i.e. can show optical rotatory power.

32/35

Resolution in the LCE case?

- Is ideal softness, the starting point of the (nonlinear) semisoft description, general enough?
- if not, the symmetry arguments were not applicable and there were no contradiction with the rheological shear elastic measurements
- (semi-)softness approach assumes Gaussian properties of the network - not present for the twice crosslinked elastomers (cf. talk by P. Martinoty)
- (semi-)softness approach assumes affine deformations not present for realistic polymer networks (cf. next page)

Resolution in the LCE case?

- Is ideal softness, the starting point of the (nonlinear) semisoft description, general enough?
- if not, the symmetry arguments were not applicable and there were no contradiction with the rheological shear elastic measurements
- (semi-)softness approach assumes Gaussian properties of the network - not present for the twice crosslinked elastomers (cf. talk by P. Martinoty)
- (semi-)softness approach assumes affine deformations not present for realistic polymer networks (cf. next page)

33/35

No affine deformations

• no affine deformations under stretch

(simulations by R. Everaers and K. Kremer)

 this might also be the reason for intrinsic inhomogeneities, even in the single domain samples

Pleiner (MPI-P Mainz)

Nematic Elastomer Elasticity

34/35

Announcement

Welcome to the 24th International Liquid Crystal Conference ILCC2012 August 19 - 24, Mainz, Germany

http://www.ilcc2012.de

35/35

Pleiner (MPI-P Mainz)

Nematic Elastomer Elasticity