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Abstract We present the macroscopic dynamics of polar nematic liquid crystals in a two-fluid context.
We investigate the case of a nonchiral as well as of a chiral solvent. In addition, we analyze how the
incorporation of a strain field for polar nematic gels and elastomers in a solvent modifies the macroscopic
dynamics. It turns out that the relative velocity between the polar subsystem and the solvent gives rise
to a number of cross-coupling terms, reversible as well as irreversible, unknown from the other two-fluid
systems considered so far. Possible experiments to study those novel dynamic cross-coupling terms are
suggested. As examples we just mention that gradients of the relative velocity lead, in polar nematics to
heat currents and in polar cholesterics to temporal changes of the polarization. In polar cholesterics, shear
flows give rise to a temporal variation in the velocity difference perpendicular to the shear plane, and in
polar nematic gels uniaxial stresses or strains generate temporal variations of the velocity difference.

1 Introduction

There are many two-fluid systems composed of two
immiscible subsystems including, as examples, fluid
emulsions [1], colloidal suspensions [2], polymer solu-
tions and mixtures [3], fiber networks in a matrix [4,5],
polymeric materials reinforced by carbon nanotubes [6],
and microtubules coupled to the cytoskeleton in cells
[7]. Over the years, a large amount of work went into
the optimization of the static properties of such mate-
rials.

More recently, macroscopic dynamic two-fluid
descriptions have been given for a number of soft mat-
ter materials and complex fluids starting with immis-
cible liquids [8,9] and combinations of ordinary or vis-
coelastic liquids with nematic liquid crystals [8]. More
recently, this approach has been applied to a number of
other two-fluid systems including immiscible compound
materials in solids and gels [10], bioinspired complex flu-
ids [11,12], and materials characterized by the forma-
tion of clusters, for example of smectic clusters above
the nematic to smectic A transition [13] and of clusters
above the glass transition [14].

In macroscopic dynamics one keeps, in addition to
the locally conserved variables (e.g., mass density, den-
sity of momentum and energy density) and the vari-
ables associated with spontaneously broken continu-
ous symmetries [15–18], also macroscopic variables that
relax on a sufficiently long, but finite time scale to be
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of interest for the macroscopic behavior of the system
[18]. In the present paper, we focus predominantly on
two-fluid systems with a static polar preferred direc-
tion, which breaks parity symmetry, but is invariant
under time reversal. Such systems are characterized by
a polar unit vector, p̂i with p̂2

i = 1, which breaks spon-
taneously rotational symmetry. It is associated with a
macroscopic electric polarization Pi = P p̂i with the
magnitude P of the polarization. The latter is treated
as a macroscopic, slowly relaxing variable. For a dis-
cussion of the molecular foundations of polar nematic
order and their physical consequences, cf. [19–21].

In the case of two-fluid systems, one takes into
account a second velocity, or conveniently the differ-
ence, wi, of the velocities of the two subsystems. In
a nonsuperfluid system, only the barycentric velocity
is truly hydrodynamic and wi a macroscopic, slowly
relaxing variable. In superfluids, not considered here
the superfluid velocity is associated with broken gauge
invariance and therefore a truly hydrodynamic quantity
[22], giving rise, for example, to the propagation of sec-
ond sound in the bulk in the long wavelength limit in
the superfluid phases of 4He [22,23] and of 3He [24–28].

In addition, there is a second mass density associated
with the solvent system, which we will treat as a con-
served quantity, although generally, depending on the
material of interest, it could relax on a finite time scale
[8].

In the first part of this paper, we deal with the two-
fluid description of polar nematic fluids discussing two
cases separately. First we consider a nonchiral solvent
in Sect. 2; in this case, the corresponding one-fluid sys-
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tem is a polar nematic, whose macroscopic dynamics
has been derived a number of years ago [29]. In Sect. 3
we investigate a two fluid model for polar nematics in
a chiral solvent. These results also apply to a polar
cholesteric in a nonchiral solvent, since the two fluid sys-
tems are assumed to be mixed on a microscopic scale.

In Sect. 4, we analyze how for polar nematic gels and
elastomers the elastic strain field can be incorporated
in a two-fluid description involving a nonchiral as well
as achiral solvent. In addition, relative rotations of the
polar direction with respect to the elastic network are
considered. In Sect. 5, we discuss some possible dynamic
experiments involving the relative velocity. In particu-
lar, reversible effects connected with heat and concen-
tration currents in polar nematics and polar cholester-
ics, dissipative effects coupling to the stress tensor in
polar cholesterics, and reversible coupling effects to
strains and relative rotations in polar gels. A brief sum-
mary and perspective in Sect. 6 concludes the paper.

Throughout the paper we comment which static and
dynamic cross-coupling terms survive the transition
from polar to nonpolar nematics or cholesterics.

2 Two-fluid model for polar nematics with
a nonchiral solvent

2.1 Variables

In this section of the manuscript, we study a nonchi-
ral two-fluid system, namely a polar nematic with an
isotropic liquid as the second, “solvent” fluid. For the
polar nematic aspects, we will make use of the previous
work on the macroscopic description of one-component
polar nematics [29]. The two-fluid character is manifest
by the additional macroscopic variables, velocity differ-
ence wi and concentration φ of the solvent component
[8,9]. The other variables are the entropy density, σ,
the density, ρ, the density of linear momentum, gi, and
the macroscopic polarization, Pi.

The presence of impurities, contaminants, etc., can
be taken care of by adding a concentration variable
c. If this concentration is conserved, one has thus an
additional conserved quantity in the list of macroscopic
variables. If this concentration is not conserved, as it
will be typically the case for charged impurities such
as ions, one will have a dynamic equation with a relax-
ation time contribution. For fast relaxation times, the
associated equation will be no longer kept on the list of
macroscopic variables, while for sufficiently long relax-
ation times its dynamic equation will be incorporated.

The first law of thermodynamics relates changes of
the variables to changes of the energy density ε by the
Gibbs relation [18,30].

dε = T dσ + μdρ + Π dφ + vidgi + midwi

+hP
i dp̂i + hP dP + EidDi (1)

where we have split the macroscopic polarization Pi

into its magnitude, P , and its direction, p̂i, where p̂i is
a polar unit vector meaning (p̂i)2 = 1; thus, Pi = P p̂i.
The Einstein summation convention is used throughout
the paper, whenever possible. The Gibbs relation con-
tains the entropy density σ, representing the thermal
degree of freedom, with its thermodynamic conjugate,
the temperature T . Other conjugates are the chemical
potential μ, the osmotic pressure Π, the mean velocity
vi = gi/ρ, mi, the conjugate field to wi, the molecular
field associated with the polar unit vector p̂i, hP

i , and
the molecular field hP associated the magnitude of the
polarization, P . Although we will not consider the elec-
tric charge density, nor Di, the electric displacement
field as independent variables, the contribution EidDi

is necessary to be able to describe Maxwell stresses and
field-induced pressure changes [18]. The conjugate Ei is
the local electric field containing internal and external
contributions. Our notation follows closely that of Refs.
[13,29].

In the nonpolar case, the polar order is replaced
by the uniaxial nematic order (S/2)(n̂in̂j − (1/3)δij),
where the nematic director n̂i describes the broken rota-
tional symmetry. A director is part of the nematic order
parameter and is therefore subject to the n̂i → −n̂i

invariance. This restriction is absent for the polar case,
where the polar order parameter P p̂i contains the vec-
tor p̂i. To switch to the nonpolar case, one has to replace
hP

i dp̂i + hP dP by hn
i dn̂i + hSdS.

2.2 Statics

The static behavior of the macroscopic system studied
here is conveniently described by the energy functional
in harmonic approximation Refs. [29,31] including the
kinetic energy densities

ε =
1

2
P0E (δp̂i)

2 +
1

2
cP (δP )2 +

1

2
K

(2)
ij (∇iP )(∇jP )

+
1

2
Kijkl(∇ip̂j)(∇kp̂l) + K

(3)
ijk(∇iP )(∇j p̂k)

+
1

2
cρρ(δρ)2 +

1

2
cσσ(δσ)2 +

1

2
cφφ(δφ)2

+cρφ(δρ)(δφ) + cρσ(δρ)(δσ) + cσφ(δσ)(δφ)

+(γ1δρ + γ2δσ + γ3δφ) δP

+(θ1δρ + θ2δσ + θ3δφ) p̂i∇iP

+(θ̄1δρ + θ̄2δσ + θ̄3δφ) divp̂ +
1

2ρ
g2 +

1

2
αw2 (2)

where δ denotes deviations from the equilibrium value,
in particular δP = P − P0, δp̂i = p̂i − p̂0

i , δφ = φ − φ0.
We only consider a spatially homogeneous ground state,
meaning P0, φ0 and p̂0

i are constant and the direction
of p̂0

i is arbitrary.
Applying a constant external electric field Ei with

magnitude E, p̂0
i will be parallel to the external field,

p̂0
i = Ei/E. The polarization electric coupling, −P · E,

translates into the hydrodynamic electric orientation
energy P0E(δp̂i)2 using p̂0

i δp̂i = − 1
2 (δp̂i)2. In addi-

tion, P0 acquires an additional contribution linear in
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E, δP0 = χE, with χ the electric susceptibility. In the
following, we will use P0 as short-hand notation also
for the field case. The stiffness of order parameter vari-
ations is given by cP .

Although the energy density expression is given in
harmonic approximation only, it can give rise to nonlin-
ear effects, since material parameters generally are still
functions of the state variables, like temperature, pres-
sure, and polarization P0, and therefore also of E. This
is in contrast to ordinary nematics, where the material
parameters can only be a function of E2.

Inhomogeneous deviations of the polarization are
described by energy contributions isomorphic to that
of a usual nematic phase including spatial modulations
of the order parameter modulus. They comprise the
Frank orientational elastic energy (∼ Kijkl with splay,
bend and twist [32]), the energy associated with gra-
dients of the modulus (∼ K

(2)
ij of the standard uniax-

ial form) [18] and a cross-coupling term between gradi-
ents of the preferred direction to gradients of the order
parameter modulus (K(3)

ijk = K(3)(δ⊥
ikp̂j + δ⊥

jkp̂i) with
δ⊥
jk ≡ δjk − p̂j p̂k) [33].
In addition, there is the energy density of a fluid

binary mixture in the third and fourth lines. In the fifth
line, there are couplings (∼ γn) between the polariza-
tion and variations of ρ, σ and φ, which are of the same
nature as the pyroelectric term in solids [34]. Other
cross-coupling terms, ∼ θ1,2,3 (line six) and ∼ θ̄1,2,3

(line seven), are relating variations of ρ, σ and φ to
splay, divp̂, and to spatial variations of the polarization
along the preferred direction, p̂i∇iP , respectively. We
note that all these contributions are absent for nonpolar
nematics, since they violate the n̂i → −n̂i invariance.

It is well known that a phase with div p̂ = const.
(“splay phase”) does have a lower Ginzburg–Landau
free energy (compared to the homogeneous state), but
necessarily involves defects that increase the energy.
The stability of such a splay phase depends, for exam-
ple, on boundary conditions and will not be considered
here. For a hydrodynamic treatment of splay phases,
see [35]. Since we are dealing with a stable homoge-
neous equilibrium state here, the linear surface term,
∼ div p̂, can be neglected.

Ordinary nonpolar nematics with a director field, n̂,
show flexoelectricity described by a contribution to the
generalized energy of the form (for curl E = 0) [18,32]
∼ (δ⊥

ijnk − δ⊥
jkni)(∇inj)Ek. For a polar system, the

flexoelectric energy would read ∼ p̂iEi(div p̂) and sim-
ply renormalizes the prefactor of the linear splay term,
which we neglect anyhow.

Finally, the kinetic energy (1/2ρp)(gp)2+(1/2ρs)(gs)2
expressed by the momentum densities for the polar and
the solvent subsystem, respectively, leads to α = φ(1 −
φ)ρ, since gp + gs = g.

Naturally the harmonic approximation is a restric-
tion in the sense that only sufficiently small deviations
from the spatially homogeneous ground state are con-
tained. Big changes such as, for example, a complete
director reorientation as in the Frederiks transition [32],

require a fully nonlinear analysis of all the variables
involved.

In the following, we list the expressions for the
conjugated variables in terms of the hydrodynamic
and macroscopic variables. They are defined as par-
tial derivatives with respect to the appropriate variable,
while all the other variables are kept constant, denoted
by ellipses in the following

h
′P =

∂ε

∂P

⏐
⏐

...
= cP δP + γ1δρ + γ2δσ + γ3δφ (3)

ΦP
i =

∂ε

∂(∇jP )

⏐
⏐

...
= K

(2)
ij (∇jP ) + K

(3)
ijk(∇j p̂k)

+(θ1δρ + θ2δσ + θ3δφ)p̂i (4)

h
′P
i =

∂ε

∂p̂i

⏐
⏐

...
= P0E δp̂i (5)

ΦP
ij =

∂ε

∂(∇j p̂i)

⏐
⏐

...
= Kjikl(∇kp̂l) + K

(3)
kji(∇kP )

+(θ̄1δρ + θ̄2δσ + θ̄3δφ)δ⊥
ij (6)

δμ =
∂ε

∂δρ

⏐
⏐

...
= γ1δP + θ1p̂i∇iP + θ̄1divp̂

+cρρδρ + cρφδφ + cρσδσ

+w2
i φ(1 − φ) (7)

δT =
∂ε

∂δσ

⏐
⏐

...
= γ2δP + θ2p̂i∇iP + θ̄2divp̂

+cσσδσ + cρσδρ + cσφδφ (8)

δΠ =
∂ε

∂δφ

⏐
⏐

...
= γ3δP + θ3p̂i∇iP + θ̄3divp̂

+cφφδφ + cφρδρ + cφσδσ

+wigi + ρw2
i (1 − 2φ) (9)

mi =
∂ε

∂wi

⏐
⏐

...
= φ(1 − φ)ρwi ≡ α wi (10)

from which the total molecular fields, used in Eq. (1),
hP = h

′P −∇jΦP
j and hP

i = h
′P
i −∇jΦP

ij follow immedi-
ately. The wi-dependence of the chemical potential and
the osmotic pressure are due to the ρ- and φ-dependence
of α.

2.3 Dynamics

In the following, we will disregard electric field-induced
dynamic effects, assuming only moderate field strengths.
The dynamic equations have the form:

ε̇ + ∇i(ε + p)vi + ∇i

(

j εR
i + j εD

i

)

= 0, (11)

σ̇ + ∇i(σvi + j σR
i + j σD

i ) =
2R

T
, (12)

ρ̇ + ∇i(ρvi) = 0, (13)

ġi + ∇j(givj + p δij + σth
ij + σ R

ij + σ D
ij ) = 0, (14)

φ̇ + vj∇jφ +
1
ρ
∇imi + ∇i(j

φR
i + jφD

i ) = 0, (15)

ẇi + vj∇jwi + ∇i(ρ−1Π) + XwR
i + XwD

i = 0, (16)
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Ṗ + vi∇iP + XPR + XPD = 0, (17)

ṗi + vj∇j p̂i + (p̂ × ω)i + XPR
i + XPD

i = 0 (18)
ρ̇e + ∇j(ρevj) = 0, (19)

The conserved quantities and the entropy density con-
tain phenomenological currents (∼ ji), while the quasi-
currents (∼ X) are associated with spontaneously bro-
ken continuous symmetry variables or macroscopic vari-
ables.

We use the vorticity ωi = (1/2)εijk∇jvk, the pressure
p including the isotropic part of the Maxwell stress

p =
∂ (

∫

εdV )
∂V

= −ε + μρ + Tσ + v · g + DiEi

(20)

and the off-diagonal terms of the Maxwell and the
Eriksen-type stresses [36]

2σth
ij = − (EiDj + DiEj) + ΦP

j ∇iP + ΦP
i ∇jP

+ ΦP
kj∇ip̂k + ΦP

ki∇j p̂k + ∇k(p̂jΦP
ik − p̂iΦP

jk).

(21)

The Maxwell stress is of the standard form [37,38] and
has been symmetrized with the help of the requirement
that the energy density should be invariant under rigid
rotations [18]. In detail, one first obtains directly from
the condition of zero entropy production in Eq. (24)

σth
ij = −DjEi + ΦP

j ∇iP + ΦP
kj∇ip̂k (22)

and uses the requirement of rotational invariance of the
Gibbs relation [15]

0 = εijk(ΦP
jl∇lp̂k + ΦP

lj∇kp̂l) (23)

Compare also Ref. [15] for a detailed exposition.
The source term of Eq. (12) contains R, the dissipa-

tion function, which represents the energy dissipation of
the system. Due to the second law of thermodynamics,
R must satisfy R ≥ 0: For reversible processes, this dis-
sipation function is equal to zero, while for irreversible
processes it must be positive

R = −jσ∗
i ∇iT − jφ∗

i ∇iΠ − σ∗
ij∇jvi

+mi Xw∗
i + hP

i δ⊥
ikXP∗

k + hP XP∗ ≥ 0 (24)

where the upper sign applies for ∗ = D and the lower
one for ∗ = R.

The phenomenological currents and quasi-currents
are the sum of the reversible and the dissipative part,
as can be seen in Eqs. (11)–(18). The various trans-
port contributions in Eqs. (11)–(18) (as well as p and
σth

ij ) are reversible and add up to zero in the entropy
production.

These phenomenological currents and quasicurrents
are treated in the following subsections within ’lin-
ear irreversible thermodynamics’ (guaranteeing general
Onsager relations), i.e., as linear relations between cur-
rents and thermodynamic forces. The resulting expres-
sions are nevertheless nonlinear, since all material
parameters can be functions of the scalar state vari-
ables (e.g., p, T , P , φ).

The form of Eq. (15) reflects the fact that both densi-
ties, ρp and ρs, are conserved individually, and Eq. (17)
describes the polar order parameter modulus as a slowly
relaxing quantity (similar to, e.g., the nematic order
parameter modulus [39] or the superfluid order [23,40]).
Although the electric charge density is not an indepen-
dent degree of freedom, Eq. (19) is necessary to allow
for the Maxwell stress [18].

In Eqs. (11)–(18), the transport and convective
dynamic contributions are written in terms of the mean
velocity, vi. This guarantees compatibility with the gen-
eral thermodynamic laws. In a two-fluid system, how-
ever, there are additional contributions of the transport
and convective type in the reversible phenomenological
currents that effectively modify transport and convec-
tive velocities (cf. the following section). In particular,
it allows to describe specific models, where, for exam-
ple, variables of the first (second) subsystem are trans-
ported and convected with the first (second) velocity.
In this manuscript, we will not particularly focus on
this point and refer to appropriate previous discussions
[8,10,13].

2.4 Reversible currents

To obtain the reversible currents, one expands all cur-
rents and quasi-currents systematically into the ther-
modynamic forces/conjugates taking into account the
behavior under time reversal, spatial inversion, rigid
rotations and, most importantly, zero entropy produc-
tion. For a more detailed exposition of the method, we
refer to Ref. [18]. For the reversible dynamic behav-
ior of our macroscopic system, we obtain the following
expressions for the reversible currents containing phe-
nomenological parameters

j σR
i = β̄ij mj + ϕσ

ijkAjk + ϕwσ
ijk∇jmk, (25)

σ R
ij = 2β2 mi wj + λP

ijh
P − λkjih

P
k

−ϕσ
kji∇kT − ϕφ

kji∇kΠ (26)

XwR
i = β̄ij∇jT + γij∇jΠ + β2 wj(∇ivj + ∇jvi)

+β3mj(∇jwi − ∇iwj) + β4wj(∇jvi − ∇ivj)

+∇j(β̂jih
P ) − β1h

P
j ∇ipj − ∇j(λ

m
kjih

P
k )

+β5h
P ∇iP + ϕwσ

kji∇k∇jT + ϕwφ
kji∇k∇jΠ (27)

XPR
i = −λijk∇jvk − λm

ijk∇jmk + β1 mj∇j pi, (28)

XPR = βijAij + β̂ij∇imj − β5mi∇ih
P , (29)

jφR
i = γij mj + ϕφ

ijkAjk, +ϕwφ
ijk∇jmk, (30)
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with λm
ijk = 1

2λm
1 δ⊥

ij p̂k + 1
2λm

2 δ⊥
ikp̂j , λijk given by

Eq. (31). The coupling of the polarization and the den-
sity of linear momentum are provided by the tensors

λijk = λ(p̂jδ
⊥
ik + p̂kδ⊥

ij) and λP
ij = λP

2 δ⊥
ij + λP

3 p̂ip̂j (31)

One finds a total of three material-dependent coupling
terms. The first is the analogue of the classical flow
alignment term coupling the orientation of the preferred
direction, p̂i, to deformational flow, while the coupling
to rotational flow (rigid rotation) is not material depen-
dent and has already been made explicit in Eq. (18).
The two contributions ∼ λP

2 and ∼ λP
3 are associated

with the coupling of the magnitude of the polarization,
P , to velocity gradients. For the reversible coefficients
β1, . . . , β5 as well as for the tensors β̄ij and β̂ij , we fol-
low closely the notation of Refs. [8,9] and [13]. Finally
we have for ϕα

ijk and ϕwα
ijk the structure

ϕα
ijk = ϕα

1 p̂ip̂j p̂k + ϕα
2 p̂iδ

⊥
jk + ϕα

3

(

p̂jδ
⊥
ik + p̂kδ⊥

ij

)

(32)

where α ∈ {σ,Π}. These reversible dynamic cross-
coupling terms exist in all macroscopic systems with
a parity breaking vector (compare, for example, Ref.
[41]). Naturally the terms ∼ ϕw α

ijk exist only for two-
fluid systems, since there is no relative velocity other-
wise.

In Eqs. (25)–(30), all contributions with any third-
rank tensor ϕijk are odd in p̂i and therefore absent in
nonpolar nematics.

2.5 Dissipative currents

To describe dissipative processes, it is convenient to
expand the dissipation function, R, the source term
in the dynamic equation for the entropy density, into
an expression quadratic in the thermodynamic forces,
which is positive. Then, taking variational derivatives
(or partial derivatives when applicable) of R with
respect to forces, one obtains linear relations between
the currents and the quasi-currents on the one hand and
thermodynamic forces on the other (see also below).
The entropy production is a scalar under all trans-
formations compatible with symmetry including time
reversal, spatial parity, and rigid rotations. The positiv-
ity of R guarantees automatically that inequality (24)
is satisfied for dissipative contributions. For a detailed
exposition of the method, we refer to Ref. [18]. The dis-
sipative dynamic behavior of our macroscopic system is
characterized by the dissipation function R

R = κij(∇iT )(∇jT ) + Dij(∇iΠ)(∇jΠ)

+2DTφ
ij (∇iT )(∇jΠ)

+ξijmimj + νijkl(∇jvi)(∇lvk)
+2ν c

ijkl(∇jvi)(∇lmk) + ν w
ijkl(∇jmi)(∇lmk)

+b⊥hP
i hP

i + b||hP hP

+2κP
⊥δ⊥

ij(∇iT )hP
j + 2κP

|| (p̂i∇iT )hP

+2DP
⊥δ⊥

ij(∇iΠ)hP
j + 2DP

|| (p̂i∇iΠ)hP (33)

The tensors κij , DTφ
ij , Dij , ξij as well as νijkl and

νw
ijkl are of the standard uniaxial form for second and

fourth ranks tensors [18,34]. The tensor νc
ijkl lacks the

νijkl ↔ νklij invariance and therefore has one coeffi-
cient more than νijkl [34]. The contribution ∼ b|| in
the entropy production describes the relaxation of the
polarization modulus P , while the contribution associ-
ated with b⊥ corresponds to the diffusion of the pre-
ferred direction (conventionally called γ−1

1 in the lit-
erature of nematodynamics). These terms have their
analogues in ordinary nematics (with the order param-
eter modulus included). Specific for polar nematics and
polar nematics with a solvent are the dissipative cross-
couplings between polarization and gradients of tem-
perature and osmotic pressure governed by the material
parameters κP

⊥, κP
‖ as well as DP

⊥, DP
‖ .

The four last contributions with coefficients κP
⊥,‖ and

DP
⊥,‖ cannot exist in nonpolar nematics, since they are

odd in p̂i.
To obtain the dissipative parts of the currents and

quasicurrents, we take the partial derivatives of R with
respect to the appropriate thermodynamic force

jσD
i = − ∂R

∂(∇iT )

⏐
⏐

...
= −κij(∇jT ) − DTφ

ij (∇jΠ)

−κP
⊥hP

i − κP
|| p̂ih

P (34)

jφD
i = − ∂R

∂(∇jΠ)

⏐
⏐

...
= −Dij(∇jΠ) − DTφ

ij (∇jT )

−DP
⊥hP

i − DP
|| p̂ih

P (35)

σD
ij = − ∂R

∂(∇jvi)

⏐
⏐

...
= −νijklAkl − νc

ijkl(∇lmk) (36)

XwD
i =

δR

δmi

⏐
⏐

...
= ξijmj

−∇j(νw
ijkl∇lmk + νc

ijklAkl) (37)

XPD
i =

∂R

∂hP
i

⏐
⏐

...
= b⊥hP

i

+δ⊥
ij(D

P
⊥∇jΠ + κP

⊥∇jT ) (38)

XPD =
∂R

∂hP

⏐
⏐

...
= b||hP

+p̂i(DP
|| ∇iΠ + κP

|| ∇iT ) (39)

3 Two-fluid model for polar nematics with
a chiral solvent-polar cholesterics

In this section, we consider a two-fluid system com-
posed of a polar nematic phase and a chiral liquid com-
ponent. The analysis applies equally well to a polar
cholesterics phase in an isotropic solvent as long as the
bulk of the phase is considered. Compared to the sys-
tem of the preceding section, a polar nematic phase
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with an isotropic solvent, the additional feature is now
the existence of chirality. The latter is described by
a pseudoscalar quantity, q0, that is invariant under
proper rotations, but changes sign if a spatial inver-
sion is involved, thereby breaking inversion symme-
try. Although inversion symmetry is already broken by
the polar preferred direction, the pseudoscalar quantity
leads to additional effects. In an isotropic liquid chiral-
ity leads to optical activity, the rotation of the plane of
linearly polarized light, while in liquids with a preferred
direction, e.g., cholesterics, this preferred direction ori-
ents in a helical fashion in the ground state. The same
can be expected for chiral polar nematics.

In the present case, chirality is a molecular property,
either of the solvent or of the polar cholesterics (or
both). It is taken as a given property of the physical
system considered. Since the 2-fluid system is mixed on
the microscopic level, chirality applies to all degrees of
freedom, even those of the nonchiral subsystem. Thus,
the macroscopic variables are the same as in the achi-
ral case and the Gibbs relation Eq. (1) as well as the
form of the dynamic Eqs. (11)–(19) can be taken over.
That means, we will use the ‘local description’ [32,42],
starting from a homogeneous ground state, and describe
the chiral effects by adding all possible contributions,
linear in q0, to the energy density (statics) and the
phenomenological currents (reversible and irreversible
dynamics).

In the statics, there are the following chiral contribu-
tions

εq0 = · · · + K̃2q0(p̂ · curl p̂) + K7q0(p̂ · curl p̂) div p̂

+q0(α1δρ + α2δσ + α3δφ + α4δP )(p̂ · curl p̂)

(40)

where the dots denote the nonchiral contributions given
in Eq. (2). There is the linear twist term (K̃2) well
known from nonpolar chiral nematics, which gives
rise to a helical equilibrium structure (p̂ · curl p̂)0 =
q0K̃2/K2, with K2 the Frank-like modulus for the
quadratic, nonchiral twist energy. In nonpolar nemat-
ics, very often K̃2 = K2 is assumed, although there is
no a priori reason to do so and in the early discussions
the two moduli are indeed discriminated [43,44].

The second contribution (∼ K7) is a coupling
between twist and splay, which does not have a counter-
part in nonpolar cholesterics. The last line (∼ α1,2,3,4)
describes couplings between twist and variations of the
scalar variables giving rise to the static Lehmann effect
as in the nonpolar case [42].

For the reversible parts of the currents we find,
requiring vanishing entropy production, R, and indi-
cating the terms already present for polar nematics by
. . .

jσR
i = · · · + Γ2q0(sjik + skij)Ajk

+Γ4q0(sjik + skij)∇jmk, (41)

σ R
ij = · · · − Γ2q0(sikj + sjki)∇kT

−Γ3q0(sikj + sjki)∇kΠ

−Γ1q0(sikj + sjki)hP
k (42)

XwR
i = · · · + Γ4q0(sjik + skij)∇j∇kT

+Γ5q0(sjik + skij)∇j∇kΠ

+q0(Γ6asjik + Γ6bskij)∇jh
P
k , (43)

jφR
i = · · · + Γ3 q0(sjik + skij)Ajk

+Γ5 q0(sjik + skij)∇k∇jmi (44)

XPR
i = · · · + Γ1q0(sjik + skij)Ajk

+q0(Γ6asjik + Γ6bskij)∇jmk (45)

with sijk = p̂ip̂mεmjk and p̂i the polar unit vector.
There are no chiral contributions to XPR.

The additional chiral reversible terms either involve
gradients of the relative velocity (Γ4,Γ5,Γ6a,b) or of
the mean velocity (Γ1,Γ2,Γ3) coupling to temperature,
osmotic pressure and reorientation of the polar direc-
tion. They have not been considered before. In addition,
we notice that the cross-coupling terms ∼ Γ1,∼ Γ2 and
∼ Γ3 also exist in a one-fluid polar cholesteric phase.

The chiral reversible currents, involving Γ2,Γ3,Γ4,Γ5,
are present in nonpolar nematics as well, since the ten-
sors sijk are even in p̂i. The contributions ∼ Γ2 and
∼ Γ3 have already been discussed for nonpolar one-fluid
cholesterics in Ref. [32]. On the other hand, the con-
tributions ∼ Γ1 and ∼ Γ6a,6b are forbidden in nonpo-
lar nematics, since the nematic current XnR

i as well as
the nematic conjugate hn

i are subject to the n̂i → −n̂i

invariance.
For the chiral dissipative contributions, we find

R = · · · + Σpol q0(sjik + skij) miAjk

+q0(Ψ
T ∇iT + Ψφ∇iΠ + ΨP ∇ih

P )εijkp̂khP
j (46)

where . . . stands for the dissipative nonchiral contribu-
tions Eq. (33).

The most interesting dissipative cross-coupling is
clearly the contribution ∼ Σpol describing a direct
cross-coupling between relative velocities and sym-
metrized gradients of the mean velocity. It does not
exist for nonchiral polar nematics and requires for its
existence a pseudoscalar as well as a preferred direction.

There are further dissipative coupling terms between
the molecular field of the director, hP

i , and tempera-
ture and concentration gradients, as well as the force
associated with the polar order modulus, hP . They are
the dissipative parts of the Lehmann effect for a polar
system—familiar from cholesteric and chiral smectic
liquid crystals for nonpolar systems [42,45–48]. All con-
tributions to Eq. (46) survive the transfer to the non-
polar case.

From Eq. (46), we get the following chiral dissipative
parts of the currents

σ D
ij = −Σpol q0(sikj + sjki)mk, (47)

XwD
i = +Σpol + q0(sjik + skij)Ajk (48)
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jσD
i = −q0Ψ

T εijk p̂khP
j (49)

jφD
i = −q0Ψ

φεijk p̂khP
j (50)

XPD = −q0Ψ
P εijk p̂k∇ih

P
j (51)

XPD
i = +q0(Ψ

T ∇jT + Ψφ∇jΠ + ΨP ∇jh
P )εjik p̂k (52)

with sijk defined after Eq. (45).

4 Incorporation of a strain field for polar
nematic gels and elastomers in a solvent

4.1 Nonchiral solvent

In this first subsection, we discuss how the two-fluid
macroscopic dynamics is modified when a strain field
and relative rotations are incorporated for polar nemat-
ics to make the equations applicable to gels and elas-
tomers. We will make extensive use of the macroscopic
dynamics for 1-fluid polar nematic gels and elastomers
[31].

The presence of a network in polar nematics gives
rise to two additional macroscopic variables: The strain
tensor uij and relative rotations Ω̃i. The strain can be
written in linearized form as uij = 1

2 (∇iuj +∇jui) with
the displacement field ui. For a nonlinear generalization
cf. [49]. We will focus on the case of a permanently
cross-linked gel or elastomer, where uij does nor relax,
but only diffuse.

Due to the simultaneous presence of a network as well
as of the variables δp̂i, relative rotations (as pioneered
by de Gennes [50] for nematic elastomers) become an
important macroscopic variable, which can be intro-
duced in a linear description via

Ω̃i = δp̂i − p̂jΩij (53)

with Ωij = 1
2 (∇iuj − ∇iui). For a nonlinear defini-

tion, cf. [51]. Relative rotations are perpendicular to
the polar direction, p̂ip̂jΩ̃ij = 0. This variable describes
the fact that in the presence of tensor (or other vector)
fields, rotations of p̂i do not cost energy, only if also
those fields are rotated the same way, but cost energy
otherwise. Relative rotations are not truly hydrody-
namic variables, but relax slowly enough to be consid-
ered here.

The Gibbs relation Eq. (1) has to be modified accord-
ingly

dε = · · · + ψijduij + L⊥
i dΩ̃i (54)

where the dots denote all the contributions already
given in Sect. 2. The additional thermodynamic conju-
gate quantities are the elastic stress ψij and the relative
molecular field L⊥

i associated with relative rotations.
The strain and the relative rotations bring a host of

additional contributions to the energy, Eq. (2). How-
ever, none is related to the 2-fluid situation. Therefore,

we can refer to the 1-fluid expression (Eq. (3)ff of [31])
without copying it here.

For the dynamic equations, we have in addition

˙̃Ωi + vj∇jΩ̃i + Y ΩR
i + Y ΩD

i = 0 (55)

u̇ij + vj∇juij − Aij + XuR
ij + XuD

ij = 0 (56)

while the other dynamic equation are of the same form
as in Sect. 2. The nonlinear, nonphenomenological part
of the stress tensor, σth

ij , Eq. (21), now takes the form

2σth
ij = −(EjDi + EiDj) + ΦP

j ∇iP + ΦP
i ∇jP

+ΦP
kj∇ip̂k + ΦP

ki∇j p̂k + ∇k(p̂jΦP
ik − p̂iΦP

jk)

+2ψjkuki + 2ψikukj (57)

with the elasticity-related part symmetrized due to
rotational invariance of the energy density.

For the nonchiral reversible currents, we have, in
addition to the terms given in Sect. 2

σR
ij = −1

2
λ⊥(L⊥

i p̂j + L⊥
j p̂i) (58)

XwR
k = −Ξijkψij − Λδ⊥

kjL⊥
j (59)

XuR
ij = Ξijkmk (60)

Y ΩR
i = −1

2
λ⊥(δ⊥

ij p̂k + δ⊥
ikp̂j)Ajk + Λδ⊥

ijmj (61)

with

Ξijk = Ξ1p̂ip̂j p̂k + Ξ2δ
⊥
ij p̂k + Ξ3(δ⊥

ikp̂j + δ⊥
jkp̂i) (62)

The contributions ∼ λ⊥, involving relative rotations
and mean velocity flow, already exist in a 1-fluid
description. The couplings ∼ Ξijk (relating elasticity
and the velocity difference) and ∼ Λ (relating relative
rotations and the velocity difference) are specific for the
2-fluid situation.

We note that the contribution ∼ Ξ3 has been given
recently [52], where the authors have also elucidated its
biological consequences in detail.

Of the reversible currents related to uij and Ω̃i,
Eqs. (58)–(61), only the contributions ∼ λ⊥ are pos-
sible in the nonpolar case, while both cross-couplings
to the relative velocity, ∼ Ξijk and ∼ Λ, are not, since
∼ Ξijk, L⊥

i and Y Ω
i are all odd in p̂i.

For the entropy production R, governing the dissipa-
tive parts of the currents, we do not have any additional
contributions due to the strain or the relative rotation
degree of freedom, which are related to the 2-fluid sit-
uation. Thus, we refer again to the 1-fluid expression
(Eq. (46) of [31]), which we will not duplicate here.

4.2 Chiral solvent

In the present subsection, we add chirality to the system
described in the preceding subsection. The existence of
a pseudoscalar q0 allows for the additional contributions
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to the energy [36], keeping in mind that we are dealing
here with a polar system with a polar direction, p̂i,
instead of a director, n̂i.

ε = · · · − q0τ
u
ij p̂·(∇ × p̂) uij − q0τΩεikmp̂j p̂mΩ̃i∇j p̂k (63)

where τu
ij is of standard uniaxial form. The dots rep-

resent the energy contributions from the previous sec-
tions. Both terms survive the transition to the nonpo-
lar case, since Ω̃i = δn̂i − n̂jΩij [53] is then differently
defined. It should be noted that the only 2-fluid term
is still the kinetic energy, ∼ αw2

i in Eq. (2).
For the reversible chiral currents we have, in addition

to the terms given in Sect. 3

XwR
k = −q0 Ξ̃ijk ψij (64)

XuR
ij = q0 Ξ̃ijk mk (65)

where

Ξ̃ijk = Ξ̃(εikmp̂j p̂m + εjkmp̂ip̂m) (66)

This coupling between the elastic degree of freedom and
the relative velocity is specific for a 2-fluid description.
It also exists in nonpolar nematics, since Ξ̃ijk is even in
p̂i.

For the additional chiral dissipative contributions, we
get

R = · · · + q0 εijkp̂jh
p
kψφ∇iΠ

+q0 εijkp̂jL
⊥
k (ψΩ

φ ∇iΠ + ψΩ
σ ∇iT )

+q0ψjk(χφψ
ijk∇iΠ + χσψ

ijk∇iT ) (67)

where the dots represent contributions from previous
sections. The material tensors χξψ

ijk, with ξ ∈ {σ, φ},
contain one phenomenological parameter each

χξψ
ijk = χξψ(εikmp̂j p̂m + εijmp̂kp̂m) (68)

The dissipative dynamic contributions in Eq. (67)
are also present in the nonpolar case, and at the same
time also exist in a 1-fluid description, they have coun-
terparts in the 1-fluid macroscopic dynamics of ferro-
cholesterics [36], if there, the nematic director n̂i is
replaced by p̂i.

5 Possible dynamic experiments

5.1 Reversible coupling terms in polar nematics

The reversible currents in polar nematics, Eqs. (25)–
(30), contain cross-couplings between relative velocities
and, e.g., the heat current

jσR
i = ϕwσ

ijk∇jmk, (69)

with

ϕwσ
ijk = ϕwσ

1 p̂ip̂j p̂k + ϕwσ
2 p̂iδ

⊥
jk + ϕwσ

3 (p̂jδ
⊥
ik + p̂kδ⊥

ij) (70)

Taking the ẑ-axis as polar axis, one gets

jσR
x = ϕwσ

3 (∇zwx + ∇xwz) (71)

jσR
y = ϕwσ

3 (∇zwy + ∇ywz) (72)

jσR
z = ϕwσ

1 ∇zwz + ϕwσ
2 (∇xwx + ∇ywy) (73)

From Eqs. (71) and (72), we see that any pure shear
flow of the relative velocity, in a plane that contains
the preferred direction, leads to an in-plane heat current
perpendicular to the preferred direction. From Eq. (73),
we conclude that a heat flow along the preferred direc-
tion is induced by an extensional flow along the pre-
ferred direction and, with a different magnitude, also
along any perpendicular direction.

The same analysis applies to a concentration cur-
rent, Eq. (30) with ϕwφ

1,2,3. If one considers gradients of
the mean velocity (Aij), instead of the relative velocity,
appropriate effects are found, but they are not specific
for a two-fluid description.

The reciprocal effect in Eq. (27)

XwR
i = ϕwσ

ijk∇j∇kT (74)

leads to

XwR
x = +ϕwσ

3 ∇x∇zT (75)

XwR
y = +ϕwσ

3 ∇y∇zT (76)

XwR
z = ϕwσ

1 ∇2
zT + ϕwσ

2 ∇2
⊥T (77)

describing how second-order gradients of temperature
(and concentration) lead to flow in the relative velocity.

Finally, we point out that all the effects described in
this subsection are restricted to polar nematics and do
not exist in nonpolar nematics.

5.2 Reversible coupling terms in polar cholesterics

Inspecting the reversible coupling terms in Eqs. (41)–
(45), some quite intuitive possibilities emerge to detect
these contributions. Taking the heat current as an
example, we get

jσR
i = · · · + Γ4q0(sjik + skij)∇jmk. (78)

with sijk = p̂ip̂mεmjk

Taking the polar direction p̂i parallel to the ẑ-
direction, we have explicitly

jσR
x = · · · + Γ4q0(∇zmy + ∇ymz) (79)

jσR
y = · · · − Γ4q0(∇zmx + ∇xmz) (80)

Or in simple terms: the symmetrized gradient of the
velocity difference in the y − z-plane leads to a heat
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current in x−direction and a symmetrized gradient of
the velocity difference in the x−z-plane leads to a heat
current of the same magnitude and the opposite sign in
the y−direction.

The same analysis applies to a concentration current,
Eq. (44) with Γ5. If one considers gradients of the mean
velocity (Aij), instead of the relative velocity, appro-
priate effects are found, but they are not specific for a
two-fluid description.

It should be noted that these couplings of the same
variables as in the nonchiral case, Sect. 5.1, are geo-
metrically more involved, in particular show twisting
tendencies.

The counter terms in Eq. (43), necessary to have zero
entropy production, lead to

XwR
x = · · · + 2Γ4q0∇y∇zT (81)

XwR
y = · · · − 2Γ4q0∇x∇zT (82)

meaning that a temperature field, bent in a plane, leads
to a relative velocity current perpendicular to the bend-
ing plane.

Somewhat similar effects are described by the
reversible transport coefficients Γ6a and Γ6b in Eqs. (43)
and (45)

XwR
x = · · · + q0Γ6a∇zh

P
y + q0Γ6b∇yhP

z (83)

XwR
y = · · · − q0Γ6a∇zh

P
x − q0Γ6b∇xhP

z (84)

XPR
x = · · · + q0Γ6a∇zmy + q0Γ6b∇ymz (85)

XPR
y = · · · − q0Γ6a∇zmx − q0Γ6b∇xmz (86)

We close this subsection by pointing out that the
effects described in Eqs. (81) and (82) are not restricted
to polar cholesterics, but also exist in nonpolar ones. It
might be easier to detect those effects there.

5.3 Dissipative coupling terms in polar cholesterics

Inspecting the dissipation function for polar cholester-
ics, there is a chiral term, Rchir, which has only one
gradient

Rchir = Σpol q0(sjik + skij)miAjk, (87)

which gives rise to the following contributions to the
dissipative stress tensor and the quasi-current associ-
ated with the velocity difference

σD
ij = −Σpol q0(sikj + sjki)mk, (88)

XwD
i = Σpol q0(sjik + skij)Ajk (89)

We thus read off immediately from Eqs. (88) and (89)
that applying symmetrized velocity gradients gives dis-
sipatively rise to temporal variations of the relative
velocity, while the presence of velocity differences leads
to dissipative contributions to the stress tensor. Corre-
spondingly gradients of the velocity difference will give

rise to temporal variations of the density of momentum.
Taken together, Eqs. (88) and (89) describe a diffusion-
like behavior of wx and wy with a diffusion coefficient
q2
0αρ−1(Σpol)2.
To obtain explicit expressions for the dissipative

stresses and the quasi-current of wi, we take the pre-
ferred direction, p̂i, to be parallel to the ẑ-direction.

Applying an external pure shear flow of the mean
velocity in a plane containing the polar preferred direc-
tion, we obtain as a response temporal variations of the
velocity difference

XwD
x = 2Σpol q0Azy (90)

XwD
y = −2Σpol q0Azx (91)

XwD
z = 0. (92)

along the directions perpendicular to the shear plane.
Conversely, velocity differences lead to dissipative

contributions to the stress tensor, σD
ij . Specifically we

obtain the nonvanishing stresses

σD
zx = σD

xz = −q0Σpolαwy (93)

σD
zy = σD

yz = +q0Σpolαwx (94)

again in a helical fashion.
We emphasize that the dissipative contributions just

examined are specific for two-fluid systems and have no
analogue in one-component systems.

This type of dissipative cross-coupling exists also for
chiral nonpolar systems.

5.4 Reversible coupling terms in polar nematic gels

Here, we focus on reversible coupling terms in polar
nematic gels between relative velocities on the one hand
and elastic stresses and relative rotations on the other.
These effects are specific for a two-fluid system and
require a polar-preferred direction and are therefore
absent in nonpolar nematic gels.

From Eqs. (59)–(62), we have for the reversible con-
tributions of interest in this connection

XwR
k = −Ξijkψij − Λδ⊥

kjL
⊥
j (95)

XuR
ij = Ξijkmk (96)

Y ΩR
i = +Λδ⊥

ijmj (97)

with

Ξijk = Ξ1p̂ip̂j p̂k + Ξ2δ
⊥
ij p̂k + Ξ3(δ⊥

ikp̂j + δ⊥
jkp̂i) (98)

where Ξijk describes the reversible connection among
the relative velocity, elastic stresses and strains. Tak-
ing the preferred direction p̂i to be parallel to the ẑ-
direction, it is obvious that 1) Ξ1 connects wz, ψzz, and
uzz, 2) Ξ2 connects wz, ψxx +ψyy and uxx +uyy, while
3) Ξ3 connects wx, ψxz and uxz (or x replaced by y).
These variables oscillate homogeneously with frequen-
cies ω2 = Ξ2

ncnα, with n ∈ {1, 2, 3} for the three cases
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discussed above, and cn the longitudinal, the trans-
verse, and the shear elastic modulus, respectively, and
α = ρφ(1 − φ).

Of course, the dynamics of the relative velocity
relaxes with rate ξij , Eq. (37), leading to

ω2 − iωξnα − Ξ2
ncnα = 0 (99)

with ξ1,2 = ξ‖ and ξ3 = ξ⊥. Since the relaxation
is expected to be strong, Eq. (99) describes an over-
damped oscillation.

We close this subsection by briefly discussing the cou-
pling of relative rotations to relative velocities ∼ Λ
given in Eqs. (95) and (97). The reversible terms give
rise to homogeneous oscillations with frequency ω2 =
Λ2D1α, with D1 the stiffness coefficient for relative
rotations. However, in this case not only the relative
velocities are relaxing, but also the relative rotations,
making this mode even more strongly overdamped.

6 Summary and perspective

In this work, we have predominantly analyzed the
macroscopic dynamics of polar two-fluid systems: polar
nematics and gels in a nonchiral as well as in a chi-
ral solvent. It turns out that the relative velocity as
the additional dynamic variable allows for a large num-
ber of reversible and dissipative dynamic cross-coupling
terms. For several of these couplings, we have outlined
experimental set-ups to detect these effects, not inves-
tigated before. These include the possibility that, e.g.,
in polar nematics second-order temperature gradients
lead to temporal variations of the relative velocity field
and vice versa, gradients of the relative velocity cre-
ate a heat current. In polar cholesterics, gradients of
the relative velocity generate temporal changes of the
polarization, and vice versa, gradients of the polariza-
tion give temporal changes of the relative velocity. In
the same system, there is a dissipative coupling between
the relative velocities and mean velocities involving
only one gradient, i.e., mean shear flow triggers tem-
poral changes of the relative velocity. Finally, in polar
nematic gels elastic strains give rise to temporal changes
of the relative velocity and, vice versa, relative veloci-
ties generate temporal changes of the strain. As a result,
relative velocities can exhibit (strongly) damped oscil-
lations.

As the systems become more complex, meaning they
have typically more macroscopic variables, the num-
ber of coefficients becomes larger. This is also true as
the systems go from isotropic to lower symmetries, as,
for example, to uniaxial and biaxial nematics. Nev-
ertheless, it is well known how to derive microscopic
expressions for all the phenomenological parameters. In
the context of nematic liquid crystals, as an example
of a classical room-temperature system, this has been
done by Forster [16,17]. In a quantum-mechanical sce-
nario, this problem was also analyzed for the superfluid

phases of 3He [28,54]. In both cases, the Mori–Zwanzig–
Forster projector formalism was used [16,17,55–57]. For
the equal time response (the frequency matrix), one
is using classically Poisson brackets, while quantum-
mechanically equal time commutators apply. In addi-
tion, the matrix of static susceptibilities and the mem-
ory matrix enter the description.

To measure the transport parameters is as a rule
rather nontrivial for condensed fluid systems. While
such measurements have been done for simple fluids
(heat conductivity and shear viscosity) and for misci-
ble binary mixtures (one has in addition diffusion and
the Soret coefficient), the full program of measuring all
dynamic transport coefficients has hardly been accom-
plished for any low molecular weight nematic liquid
crystalline phase. All or almost all of these transport
parameters have been determined for MBBA (N-(p-
methoxybenzyliden)-p-butylaniline, showing the first
room-temperature nematic phase) [32] and for 5CB
(4-cyano-4’-pentylcyanobiphenyl), which shows a sta-
ble nematic phase at room temperature [58]. The best
one can typically do practically is to study a subspace
in parameter space for well-defined conditions. As an
example, we mention here flow alignment in a free-
standing smectic C film. Flow alignment of the in-plane
director had been predicted theoretically [59] and has
been observed subsequently [60] when applying a rotat-
ing needle to the free-standing film to apply a torque.
In the same spirit, we have analyzed recently [61] flow
alignment in ferromagnetic nematics. We note that fre-
quently one can measure static susceptibilities such as,
for example, Frank elastic constants in a nematic, more
easily separately statically and then continue on with
simple dynamic experiments.

In order to elucidate where two fluid effects can also
become important in addition for polar nematics and
polar cholesterics, it is useful to remind the reader in
which cases solvent effects, etc., have become important
for the description of usual nematics and cholesterics.
For ordinary nematics, an outstanding flow problem for
several decades has been the breakdown of flow align-
ment for nematic phases having smectic clusters regard-
less whether a smectic phase follows at lower temper-
atures or not. Quite recently, it has been shown [13]
that a two fluid description including smectic clusters
can naturally account for this phenomenon. Along the
same lines, it has been pointed out that clusters of vari-
ous types can account for spatial heterogeneities as the
glass transition is approached from above [14]. Natu-
rally this will also be the case above the glass transition
in liquid crystalline polymers.

There has been another long-standing puzzling fea-
ture in the electric domain of nematics with smectic
clusters, namely a sign change in the anisotropy for
the electric conductivity [62–65]. This also lead in turn
to electroconvective patterns unknown from other sys-
tems [66]. In Ref. [13], it has been demonstrated how
a two-fluid picture can account for the change in the
anisotropy of the electric conductivity, which had no
other explanation before.
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The electric effects of ionic impurities in classical
thermotropic nematics also have a long prehistory, in
particular in the field of electroconvection. To account
for these effects, the group of Kramer generated WEM
(Weak Electrolyte Model) [67,68]. It turns out that
ionic impurity concentrations and their transport also
play an important role in the explanation of experimen-
tal results [68,69].

When it comes to polar nematics and polar cholester-
ics, the number of well-controlled dynamic experiments
on the influence of ions and their motion as well as
of clusters appears to be almost zero. Surely colloidal
rods in water might not be the first choice to reveal
two fluid effects, but they are a rather special case of
classical nematics with a solvent. We rather think of
nematic polymeric and elastomeric systems and their
chiral analogues as they are abundant in biological sys-
tems.

Clearly Ref. [29] is not sufficient to keep track of any
of the effects discussed in the present paper, and it
therefore appears to be essential to test the predictions
made here. Surely for ferroelectric nematic systems as
they have been studied recently, electric effects can be
expected to be important and relevant, simply because
they cannot be possibly spatially homogeneous in the
bulk as already pointed out by the present authors more
than thirty years ago [35].

A topic we leave for future investigations is the
impact of two fluid effects on permeation flows [32,
70,71] and their generalizations [72]. In the simplest
case, namely for the flow with approximately constant
velocity through a fixed cholesteric structure [32,70],
one obtains a plug flow with strongly enhanced appar-
ent viscosity [71]. It will be most interesting to see how
these effects are modified in the presence of two fluid
effects for the plug flow [32,70] and it generalizations
[72].

In this manuscript, we have dealt with the 2-fluid
behavior of systems with preferred directions that break
inversion symmetry, but are time reversible. Systems of
interest are mainly coming from liquid crystal physics,
but also from biological applications. It is natural to
also look at the two-fluid macroscopic dynamic behav-
ior of preferred directions that are inversion symmetric,
but break time reversal symmetry, as is found in mag-
netically ordered systems. And this class of systems
already exists experimentally, namely ferromagnetic
nematics [73–77] and ferromagnetic cholesterics [78–80].
Both classes of systems can be viewed as suspensions
of magnetic platelets in a nematic or a cholesteric liq-
uid crystal as a solvent. So far the focus experimentally
and theoretically has been on the macroscopic dynam-
ics of one-component ferromagnetic nematics and fer-
romagnetic cholesterics [36,61,81–83] generalizing ear-
lier work on the macroscopic dynamics of ferronematics
[84,85]. As for the two-fluid aspects, there appears to
be no work on the dynamics of ferromagnetic nematics
and ferromagnetic cholesterics, while some static exper-
imental aspects of this type of behavior including con-
verse magneto-electric effects and magneto-optic effects
have been already examined for ferromagnetic nematics

in the literature [74]. Only rather recently investigations
of the macroscopic dynamic aspects of magnetic two-
fluid systems have been started for magneto-rheological
fluids [86].

Another class of two-fluid systems of interest that
should be investigated in a next step are two-fluid sys-
tems with anisotropic clusters. So far the effect of clus-
ters on macroscopic dynamics has been studied exclu-
sively for isotropic clusters close to a transition such as
above the glass transition or in the vicinity of a second-
order phase transition [14] as well as for clusters in a
nematic phase above the smectic–nematic phase tran-
sition [13].
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