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1 Introduction

Motivated by puzzling experimental observations made in compounds composed of banana-
shaped molecules, we investigate the symmetries and the physical properties of liquid
crystalline columnar phases with a macroscopic polarization in achiral materials [1]. This
study is driven by two key observations made for the still poorly understood B7 phase: a)
freely suspended films decompose spontaneously into strands [2,3] and b) several of the
textures observed for the B7 phase are reminiscent of textures observed for liquid crys-
talline columnar phases. Quite recently more experimental evidence was presented [4] in
support of columnar features evident in the B7 phase.

One of the main results of our analysis [1] is that a chiral phase of Ci-symmetry results
as soon as the macroscopic polarization is inclined with respect to the columnar axes and
the 2D lattice directions. We argue that a chiral columnar phase composed of achiral
molecules, not previously considered for classic columnar phases, is sufficient to account
for many of the unusual physical properties of B7.

Recent experiments on the effect of an external electric field and of temperature vari-
ations have also revealed the occurrence of flow close to and in the isotropic phase near
the B7 - isotropic phase transition [5]. Consequently, there is a need to look for models
which can describe phases that are optically isotropic but not cubic and can show coupling
effects between flow and electric fields and/or temperature gradients.

We discuss this [6] for the optically isotropic tetrahedratic phase characterized by a
third rank tensor order parameter 7T;;, [7]. We point out that an applied electric field
or an applied temperature gradient will lead to flow. Reciprocally we predict that, for
example, a shear flow applied to a tetrahedratic phase leads to an induced electric field
and a temperature gradient.

It is unclear how the banana molecules are arranged in the columns or in the tetra-
hedratic phase. It can be expected that aggregates of those molecules are involved. Such
structures are probably soft, in the sense that they can be distorted due to external fields,
thus giving rise to additional physical effects. As a result, the effects of external electric
field and flow on deformable tetrahedratic phases has been investigated, recently [8].



Figure 1: Hezagonal columnar phases with the polarization up (full circles) and down
(open circles) the columnar axes. All horizontal rows are antiferroelectric, but different
“stacks” lead additionally to a) 2 double-periodic antiferro-, b) 1 ferro- and 1 antiferro-,
and c) 1 triple-periodic antiferro- and 1 ferri-electric (2 up and 1 down and vice versa)
direction at 7/6.

2 The columnar banana phases

Columnar liquid crystal phases are 2-dimensional arrays of columns made of disk-like mole-
cules [9,10]. The 2-dimensional lattice is either hexagonal or rectangular characterized by
two directions, l1,2. The column axis will be called k. Without a macroscopic polarization,
P, the planes built of k/l1 2 and l;/ls are mirror planes. The directions perpendicular
to these planes are (at least 2-fold) symmetry axes (there can also be 4- and 6-fold axes).
Thus these classical columnar phases, Col, and Col,, are of Dy, (sometimes Dy, and
Degyp,) symmetry. We only consider structures without long-range positional order in the
columns, i.e. 2D crystalline and 1D fluid behavior.

The symmetry of these phases is reduced when a macroscopic polarization P is present.
What symmetry is left, depends on how the polarization is oriented with respect to the
column axis k and the lattice axes l; 2. Since it is not clear a priori how the banana
molecules are arranged in the columns, we discuss two principle possibilities for the ori-
entation of the polarization P, being either along the normal n of the ”disks” that make
up the columns or lying in the "disk” plane, (the oblique case would not give anything
substantially new). In the former case the polarization is the only structural element of
the "disks”. If untilted, that means the polarization is parallel to the column axis, P || k,
this axis remains a 6-fold or 2-fold (or 4-fold) symmetry axis for a hexagonal or rectan-
gular 2-D lattice, respectively. The plane perpendicular to P is no mirror plane anymore
due to the polarity. Mirror planes always contain the polarization and one of the lattice
directions 1y 5. Thus a Cgy (Fig.1a of [1]) or Cyy symmetric phase results, called Colpy,
or Colp,, which is achiral and has a polar direction along the column axis. Quite similar
phases can be expected from conical shaped entities (e.g. pyramidic [11] or buckyballs
with feathers [12,13]).

With a hexagonal lattice an arrangement that is antiferroelectric in all 3 lattice direc-
tions is not possible. Fig.1 shows some examples of the essential frustration.

If the polarization is tilted away from the column axis in the direction of one of the
lattice axes (say ly), then this k/P/l; mirror plane is the only symmetry element left.
This phase, called Colpp; or Colpy; in [1] has Cyp, symmetry and the polar direction can
lie anywhere in the mirror plane. They are of the same symmetry as the Cp; smectic
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Figure 2: The local structure of the Colp; phase for disk-shaped objects with k the column
azis, P the macroscopic polarization perpendicular to the disk axis n, and ly o the non-

polar symmetry directions in the planes of 2D positional order. P is not parallel to 1y or
ls.

banana phase [14,15]. If the tilt direction of P is oblique to the 2-D lattice axes, no
symmetry is left (C} symmetry). The phase (called inclined polar or Colp;) is chiral
and can have the polar direction anywhere (Fig.2 of [1]). It has the same symmetry
as the Cg phase possible for smectic phases formed by banana-shaped molecules [14].
The Colp; phase is chiral as is manifest by the existence of a pseudoscalar: with the
polarization P = Pyp (Fp is the magnitude and p the direction of the polarization) the
scalar ¢ = [p - (k X l1)] [P - (k X l2)] [P - (I1 X l2)] changes sign under spatial inversion.
For p — —p the chirality changes from, say, right- to left-handed. The chirality can,
but need not, show up in helical structures which would be right- as well as left-handed
(ambidextrous chirality), since the structure is made of achiral molecules. Thus it emerges
that tilted columnar phases with a polarization and C symmetry are a natural candidate
for B7.

If the polarization P is perpendicular to the (non-polar) ”disk” axis m, the objects
that form columns are biaxial. In the untilted case, n along the column axis k, the
polarization is in the 2D-lattice plane. If P is parallel to one of the lattice axes l;
this axis is a 2-fold rotation axis and the plane k/P is a mirror plane. The phase has
Cyy symmetry and is called Colpyy or Colp,.o (Fig.1b of [1]). If P is oblique to both,
I, and ly, the mirror plane l;/l5 is the only symmetry element left and again a Cy-
symmetric phase is obtained (Colpp;, Fig.lc of [1] or Colp,;). Fully antiferromagnetic
ordering is not possible in the hexagonal case and may result in a frustrated configuration
as discussed above, or in a rearranging of the columns into a rectangular lattice. In the
tilted case, m not parallel to the column axis k, generally a Ci-symmetric Colp; phase



class sym- polarization P 2D first-rank tensor
metry lattice
Colp, Dg, none hex none
Col, Doy, none rect none
Colpp, Cso parallel to k hex 1D along k
Colppa | Coy parallel to l; or Iy (n untilted) hex 1D along I, or I
Colpn1 | Cin in the k/l1, k /13, or 11 /15 plane, hex 2D in the plane
but oblique to k, l;, and I

Colp, Coy parallel to k rect 1D along k
Colppa | Coy parallel to l; or I rect 1D along Il or Il
Colpy1 | Cin as in Colpy; rect 2D in the plane
Colpsa | Oy parallel to l; or Iy (n tilted) any 1D along I, or I,
Colp; 4 inclined to any of the planes any 3D any

k/ly, k/ls, or 11 /1y (n untilted) orientation

or inclined to any of the directions

k, 1, or Iy (n tilted)

Table 1: This table shows the symmetries and the physical properties of the classical
columnar phases without a macroscopic polarization as well as those of the novel phases
discussed here. k, ly, and ly are the column axis, and the preferred directions of the 2D
lattice, respectively. m is the non-polar "disk” axis.

results (with no symmetry element left and with ambidextrous chirality as discussed
above) — except for the special case that the tilt of n is such that P is along one of the
lattice directions ;5. In this latter case P is a 2-fold symmetry axis and the phase has
Cy symmetry (Colps), similar to the Cpy smectic banana phases. Here P is the 2-fold
axis and ¢ = [p+ (k X n)][p- (k X l2)][p- (n X l2)]. The symmetry properties of the
polar columnar phases are summarized in Table 1

Because Colp; and Colp;, possess a polar vector, this has interesting macroscopic
electric and electromechanical properties. In the free energy they show up as

¢ = /dT[EgEiEj + PE; + E;(¢0T + (Pop + (foc) + diji B3V jup + Xgl)cEzEJEk] (1)

where the contribution ~ 65 is the usual dielectric term with six (4) independent coef-
ficients for triclinic ¢y (monoclinic Cy) symmetry [16]. The next term is characteristic
of all ferroelectric materials. The terms ~ (7, ¢P and (¢ relate to pyroelectric effects,
pressure electric effects and to an electric response resulting from a concentration change
in mixtures. The second last term in Eq.(1) is related to piezoelectric effects coupling the
electric field to in-plane deformations of the lattice built by the columns. This results in 9
(4) independent piezoelectric constants for Cy (Cy) symmetry. In addition to these linear
electric and electromechanical effects, the last term describes second harmonic generation,
where Xg,)f contributes 10 (4) independent coefficients.

We note one important difference in this respect between smectic and columnar phases.
For columnar phases, tilting the disk-shaped objects once can be sufficient to reach the
lowest symmetry level, while in the smectic Cq phase, banana-shaped molecules have to



be tilted twice, i.e. about two different orthogonal axes.

It should be noted however, that the homogeneous state as depicted in Fig.2 might
not be the true ground state of that phase, because — due to the low C} symmetry —
there are a host of possible first order gradient invariants in the free energy, allowing for
spontaneous twist, splay and splay-bend structures [17] possibly leading to textured and
frustrated structures.

3 The tetrahedratic phase

In the tetrahedratic phase one has — in addition to the usual fields describing isotropic
fluids — a third rank tensor 7Tj;, characterizing the tetrahedratic order. Tj;; is symmetric
in all indices and traceless T;;; = 0, i.e. it does not contain any vectorial quantity. Since it
transforms under an [ = 3 representation of spherical harmonics, it is odd under parity and
thus allows coupling terms not possible in ordinary simple liquids. It can be written as [7]
Tjr =0, ningng in terms of the 4 vectors nf' that form a tetrahedron. A tetrahedron
has neither a mirror plane nor inversion symmetry and so does the tetrahedratic phase.
Note that we deal only with the so-called nonchiral tetrahedratic phase, T,;, made by
achiral molecules. The lack of inversion symmetry of a tetrahedron requires a tensor
of odd rank as order parameter. Since the phase is not polar, which would contradict
isotropy, a third rank tensor is the simplest possibility to describe tetrahedratic order.
This third rank tensor cannot influence the form of second rank material tensors, like the
dielectric tensor, and the tetrahedratic phase appears to be isotropic optically. However,
there are other material properties described by higher-ranked tensors, like viscosity, where
the non-isotropic nature of this phase becomes manifest.

In addition, the existence of Tj; allows couplings described by third rank material
tensors not possible in ordinary isotropic phases. When comparing the tetrahedratic
phase to an ordinary isotropic phase in the dynamic regime, we have reversible couplings
of velocity gradients ~ T;;;,V v [6] to the electric, entropy (energy), and concentration
current and, vice versa, contributions to the stress tensor from electric fields ~ T} E,
temperature and concentration gradients ~ T3, VT and ~ T}, Ve,

This leads to simple experimentally testable predictions to enable a distinction between
the novel tetrahedratic phase and the usual isotropic liquid. Applying, for example,
a simple shear flow with the shear rate S to a tetrahedratic phase, this results in a
reversible heat current as well as an electric current perpendicular to the shear plane ~ §.
Reciprocally, one can apply an electric field in (z-direction), E, (or a temperature, or a
concentration gradient) to a sample in the tetrahedratic phase. The flow behavior is then
affected by non-vanishing components of the stress tensor fo = O'Z/ ~ F,. This result
shows that an applied electric field gives rise to a shear stress in the plane perpendicular
to the field. And this shear stress can in turn lead for spatially varying situations - via
the dynamic equation for the linear momentum density or the velocity field - to a flow in
the plane perpendicular to the direction of the applied field. The same applies to external
gradients of temperature and concentration.

If the tetrahedratic phase is not built by rigid objects, but rather made of soft aggre-
gates, as may expected for banana molecules, there is the possibility that the tetrahedratic
structure is deformed by external forces [8]. Applying an external electric field, not only is
the tetrahedratic structure oriented, but it is also deformed into a pyramidic structure of



Csy symmetry, which actually lowers the free energy of the system. The phase has then
(induced) pyroelectricity and an (induced) macroscopic polarization. The effects of shear
flow are even more drastic. Upon the tumbling of the structure, which is optically not
detectable, there is time dependent periodic structural oscillation into a C-symmetric de-
formed structure. This can be detected as an oscillating birefringence, whose frequency is
twice the shear rate [8]. Extensional flow, on the other hand, leads to a static deformation
of the tetrahedral structure into a Cj-symmetric one.

4 The B7 phase and its isotropic neighbor

In the last section we discussed how the new terms in the tetrahedratic phase coupling flow
to an external electric field as well as to temperature gradients could be experimentally
detected. Here we suggest that a good candidate for the tetrahedratic phase may be the
isotropic liquid state above the B7 phase for the following reasons.

Allowing for deformations of the tetrahedratic entities under external fields one can
show [8] that T;-symmetric structure may actually be transformed to a Csy-symmetric
one under a static electric field or to a locally Cj-symmetric (time-dependent) one under
shear flow. Then, as temperature is lowered above an isotropic - B7 phase transition,
one generates flow if an electric field or temperature variations are applied, provided the
optically isotropic phase observed is tetrahedratic. For a deformable tetrahedratic phase
the symmetry is then reduced drastically to C; in the presence of flow. Given the fact
that the heat of transition observed for this phase transition is rather large [2,3,5] and
comparable in magnitude to that observed for isotropic - pyramidic transitions [11], this
leads us to suggest that the B7 phase could be a columnar phase with a macroscopic
polarization [18]. This suggestion is further supported by the observation that B7 forms
strands rather than freely suspended films [3,19] indicating at least locally a columnar
structure. We also note that the same local C; symmetry (or rather the absence of any
symmetry) will facilitate locally the transition from a deformed tetrahedratic structure
to a columnar structure with an ‘oblique’ polarization.

To experimentally test the scenario outlined above a few crucial experiments are im-
portant. First, the question whether the B7 phase has a macroscopic polarization must be
addressed. At this time there is no clear-cut experimental result in the literature concern-
ing this point. Second, it would be important to study in detail the physical properties of
the optically isotropic phase above the B7 phase. Key question: is its symmetry reduced
drastically when external forces are applied? Third, we predict in this scenario a phase
transition from a classical isotropic fluid to a tetrahedratic phase.
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