Scanning Probe Microscopy and Surface Forces

A scanning probe microscope (SPM) is a device that detects the forces between a sample surface and a nanoscale tip (alternatively a colloidal particle or a droplet) with a sensitivity in the order of some 10 pN. These forces originate from the interaction of tip apex with the sample surface, e.g. via electrostatic and van-der-Waals forces. By raster-scanning the topography of the sample can be obtained down to molecular or atomic scales. Depending on the type of interactions forces employed, local electrical, magnetic or spectroscopic nanoscale properties can be measured as well. We make use of the extreme versatility of SFM methods to characterize various surface properties.
- Colloidal probe force spectroscopy -> Michael Kappl, Rüdiger Berger
- Drop adhesion forces -> Rüdiger Berger, Michael Kappl, Doris Vollmer, Hans-Jürgen Butt
- Bioadhesion -> Michael Kappl
- Mechanical properties on nano- and micrometer length scales -> Michael Kappl
- Nanoscale characterization of energy materials and devices (perovskite solar cells, batteries, etc.) -> Rüdiger Berger, Stefan Weber
- High-resolution force microscopy at solid-liquid interfaces -> Stefan Weber
- Forces under high hydrostatic pressure -> Hans-Jürgen Butt, Rüdiger Berger
- Nanoscale infrared spectroscopy (NanoIR) -> Rüdiger Berger