Öffentliche Seminare

Ort: Max Planck Institute for Polymer Research
The Mainz Material Simulation Days is a traditional biannual meeting. Biology poses many challenges to physics; the systems are often complex and inhomogeneous, while maintaining function. This workshop aims to target existing, and upcoming challenges for soft matter, both technical and conceptual. [mehr]

Evanescent gels and the sol-gel transition in associative polymer solutions

Gels with thermoreversible physical crosslinks show great promise for designing materials with tuneable rheology and self-healing properties. However, many questions remain to be answered before the goal of tailoring a gel’s macroscopic properties by controlling molecular scale parameters, can be achieved. We show that considerable progress in this direction can be made by examining the behaviour of physical gels near the gel transition with the help of Brownian dynamics simulations. Due to the scale-free and semidilute character of critical gels, fully capturing their structure and dynamics requires the inclusion of associative interactions between sticky monomers, solvent-mediated hydrodynamic interactions between all the monomers in a large simulation volume, and time scales spanning several orders of magnitude. We have adapted Jim Swans’ algorithm for the efficient computation of hydrodynamic interactions in colloids to polymer chains, making the simulation of the dynamics of physical gels at the transition point tractable for the first time. Rheological properties such as the zero-shear viscosity and relaxation modulus are investigated systematically as functions of polymer concentration and binding energy between associative sites. We show the structural emergence of a gel as a power law distribution of chain cluster sizes, indicating a divergence of the average cluster size. It is shown that a system-spanning network can form regardless of binding energy at sufficiently high concentration. However, the contribution to the stress sustained by this physical network can decay faster than other relaxation processes, even single chain relaxations. If the polymer relaxation time scales overlap with short-lived associations, the mechanical response of a gel becomes “evanescent”, decaying before it can be rheologically observed, even though the network is instantaneously mechanically rigid. In our simulations, the concentration of elastically active chains and the dynamic moduli are computed independently. This makes it possible to combine structural and rheological information to identify the concentration at which the sol-gel transition occurs as a function of binding energy. Further, it is shown that the competition of scales between the sticker dissociation time and the single-polymer relaxation time determines if the gel is in the evanescent regime. Finally, we compare the prediction of the concentration at the sol-gel transition by a variety of different static and dynamic signatures of gelation. [mehr]
Crystallization is often initiated at interfaces. Understanding the physical process underlying interface-induced crystallization is of fundamental interest and is relevant for many material applications. Interface-induced crystallization of liquids can occur either by heterogeneous nucleation or by the equilibrium phenomenon of prefreezing. First, we present a combined theoretical and experimental study of the effect of substrate-material interactions on the thermodynamics of prefreezing [1-3] and on the kinetics of heterogeneous nucleation in model polymers on various substrates [4]. Second, the knowledge gained about interface-induced crystallization is used to elucidate the role of interfaces for crystal orientation in films of conjugated polymers, which is important for device performance. Using polythiophenes as model conjugated polymers, we show that different crystal orientations can be formed at the interfaces to a substrate and vacuum as a result of two competing interfacial interactions. Our results demonstrate that increasing the polarity of polythiophene side chains influences the interactions at the interfaces, resulting in a change of crystal orientations [5]. Thus, we disclose the crucial role of interfacial interactions for crystallization kinetics, thin film morphology, and control of molecular orientation in films of model and semiconducting polymers. [mehr]
Zur Redakteursansicht